YEAR 4 (2019) MONITORING REPORT AYCOCK SPRINGS STREAM AND WETLAND MITIGATION SITE

ALAMANCE COUNTY, NORTH CAROLINA DMS PROJECT NO. 96312 FULL DELIVERY CONTRACT NO. 5791 NCDWR PROJECT NO. 20140335 USACE ACTION ID NO. SAW-2014-01711

CAPE FEAR RIVER BASIN
CATALOGING UNIT 03030002

Data Collection - May-November 2019

PREPARED FOR:

N.C. DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1601 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1601

January 2020

Restoration Systems, LLC 1101 Haynes St. Suite 211 Raleigh, North Carolina Ph: (919) 755-9490 Fx: (919) 755-9492

January 14, 2020

Jeremiah Dow NC DEQ Division of Mitigation Services 217 West Jones St. Raleigh, NC 27699-1652

Subject: Draft Monitoring Year 4 Annual Monitoring Report

Aycock Springs Stream and Wetland Mitigation Site (DMS #96312)

Cape Fear River Basin 03030002, Alamance County

Contract No. 005791

Mr. Dow,

Below is the response from Restoration Systems to all comments received on the Draft Aycock Springs Yr. 4 (2019) monitoring report. DMS comments are in black, and our responses are in blue. Please do not hesitate to reach out if you would like to discuss.

Sincerely

Raymond Holz

Restoration Systems

Comments Received & Responses

- 1. Title Page
 - a. Please add the following:

i. DMS Project Number: 96312

ii. NCDWR Project Number: 20140335

ii. NCDWK Hoject Number. 20140333

iii. USACE Action ID Number: SAW-2014-01711

These items were added to the title page(s).

2. Section 2.3

a. Please add a sentence to this section discussing the surface water gauge results for MY3. The following was added to section 2.3: "Tributary 3 exhibited evidence of channel formation during year 4 (2019). Additionally, the surface water gauge documented 145 consecutive days of flow."

3. Appendix B

a. Figure 2 – Please update the CCPV to differentiate between Restoration, Enhancement II, etc. Also, the surface water gauge for UT3 is not shown on the map.

The stream layer was updated to differentiate between mitigation types. The surface gauge is also now visible.

4. Appendix E

- a. Stream Gauge Graphs Please correct the title on the graph (currently reads "Year 1"). The graph title has been corrected.
- b. Groundwater Gauge Graphs Please add the graphs, they were not included in the Appendix. *The groundwater gauge graphs have been included.*

- 5. Digital data and drawings
 - a. Wetland restoration feature in the DMS geodatabase does not match creditable acreage reported in the asset table. Please provide DMS with a spatial feature for the restoration wetlands that accurately characterizes the acreage of the creditable assets (some of the inaccuracy may be from the fact that the polygon we have on file does not appear to remove stream footprint or all wetland enhancement areas from the wetland restoration polygon). The wetland restoration shapefile in the digital submittal (Wetland_rest.shp) shows 0.527 acres, and the asset table claims 0.5 acres.
 - b. CVS entry tool file is missing x, y coordinates for certain plots, and in some cases x, y coordinates exceed the bounds of the selected plot dimensions. Please resolve these errors and resubmit to DMS.

The CVS entry tool has been updated with plot coordinates.

c. Please make note of the gauge type (e.g. transducer, RDS, etc.) used in the Excel data file. Please also label any probe or benchmark elevations, the raw and corrected readings of the water elevations, and any offsets applied. The DMS Excel template is an example of what is needed for reference.

The relevant information was added to the excel file containing the raw hydrology data, based on the DMS excel template.

YEAR 4 (2019) MONITORING REPORT AYCOCK SPRINGS STREAM AND WETLAND MITIGATION SITE

ALAMANCE COUNTY, NORTH CAROLINA DMS PROJECT NO. 96312 FULL DELIVERY CONTRACT NO. 5791 NCDWR PROJECT NO. 20140335 USACE ACTION ID NO. SAW-2014-01711

CAPE FEAR RIVER BASIN
CATALOGING UNIT 03030002

Data Collection – May-November 2019

PREPARED BY:

RESTORATION SYSTEMS, LLC 1101 HAYNES STREET, SUITE 211 RALEIGH, NORTH CAROLINA 27604

AND

AXIOM ENVIRONMENTAL, INC. 218 SNOW AVENUE RALEIGH, NORTH CAROLINA 27603

January 2020

Table of Contents

1.0	PROJECT SUMMARY	
2.0	METHODOLOGY	
	2.1 Streams	
	2.2 Vegetation	
	2.3 Wetland Hydrology2.4 Biotic Community Change	
3.0	REMEDIAL ACTION PLAN	
5.0	3.1 Stream	
	3.2 Vegetation	
4.0	REFERENCES	10
	Appendices	
APPE	NDIX A. PROJECT BACKGROUND DATA AND MAPS	
	Figure 1. Site Location	
	Table 1. Project Components and Mitigation Credits	
	Table 2. Project Activity and Reporting History	
	Table 3. Project Contacts Table	
	Table 4. Project Baseline Information and Attributes	
APPE	NDIX B. VISUAL ASSESSMENT DATA	
	Figure 2. Current Conditions Plan View	
	Tables 5A-5E. Visual Stream Morphology Stability Assessment	
	Table 6. Vegetation Condition Assessment	
	Vegetation Monitoring Photographs	
APPE	NDIX C. VEGETATION PLOT DATA	
	Table 7. Vegetation Plot Criteria Attainment	
	Table 8. CVS Vegetation Plot Metadata	
	Table 9. Total and Planted Stems by Plot and Species	
	Table 10. Supplemental Vegetation Transect Data	
APPE	NDIX D. STREAM SURVEY DATA (NOTE: Yr. 4 (2019) Stream Monitoring Not Required)	
	MR 0 - 3 Cross-section Plots	
	Table 11a-11e. Baseline Stream Data Summary	
	Table 12a-12f. Monitoring Data	
APPE	NDIX E. HYDROLOGY DATA	
	Table 13. UT3 Channel Evidence	
	Stream Gauge Graph	
	Table 14. Verification of Bankfull Events	
	Groundwater Gauge Graphs	
	Table 15. Groundwater Hydrology Data	
APPI	ENDIX F. BENTHIC DATA	
	Results	
	Habitat Assessment Data Sheets	

2019 Herbicide Application Forms

APPENDIX G. MISCELLANOUS

1.0 PROJECT SUMMARY

The Aycock Springs Stream and Wetland Mitigation Site (Site) encompasses approximately 13 acres located roughly 1.5 miles north of Elon and Gibsonville in western Alamance County within 14-digit Cataloging Unit and Targeted Local Watershed 03030002030010 of the Cape Fear River Basin (Figure 1, Appendix B and Table 4, Appendix A). Prior to construction, the Site consisted of agricultural land used for livestock grazing, hay production, and timber harvest. Streams were cleared, trampled by livestock, eroded vertically and laterally, and received extensive sediment and nutrient inputs from livestock and timber harvest activities. Stream impacts in Travis Creek also occurred due to a breached dam that impounded water during storm events. In addition, streamside wetlands were drained by channel incision, soil compaction, the loss of forest vegetation, and land uses. Completed project activities, reporting history, completion dates, project contacts, and project attributes are summarized in Tables 1-4 (Appendix A).

Positive aspects supporting mitigation activities at the Site include the following.

- Streams have a Best Usage Classification of WS-V, NSW
- Located in a Targeted Local Watershed and within the NCDMS Travis, Tickle, Little Alamance Local Watershed Planning (LWP) Area
- Travis Creek is listed on the NCDENR 2012 303(d) list for ecological/biological integrity
- Immediately south and abutting the Site is a property identified in the *Little Alamance, Travis, & Tickle Creek Watersheds Restoration Plan* (PTCOG 2008) as a target property for wetland restoration and streambank enhancement/conservation
- Immediately west of the Site is a large tract associated with Guilford County open space

Based on the Cape Fear River Basin Restoration Priorities Report 2009 (NCEEP 2009) and the Little Alamance, Travis, & Tickle Creek Watersheds Restoration Plan (PTCOG 2008), Targeted Local Watershed 03030002030010 is not meeting its designated use of supporting aquatic life. Agricultural land use appears to be the main source of stress in the Hydrologic Unit, as well as land clearing and poor riparian management. This project will meet the eight priority goals of the Travis, Tickle, Little Alamance Local Watershed Plan (LWP) including the following.

- 1) Reduce sediment loading
- 2) Reduce nutrient loading
- 3) Manage stormwater runoff
- 4) Reduce toxic inputs
- 5) Provide and improve instream habitat
- 6) Provide and improve terrestrial habitat
- 7) Improve stream stability
- 8) Improve hydrologic function

The following six goals were identified by the Stakeholder group of the Travis, Tickle, Little Alamance LWP Phase I assessment which address the water quality impacts and watershed needs in all of the Little Alamance, Travis, Tickle watersheds in 2006.

- 1) Increase local government awareness of the impacts of urban growth on water resources
- 2) Strengthen watershed protection standards
- 3) Improve water quality through stormwater management
- 4) Identify and rank parcels for retrofits, stream repair, preservation, and/or conservation
- 5) Assess aguatic health to identify stressors that are the most likely causes of poor biological conditions
- 6) Meet requirements of outside funding sources for implementation of projects

The following table summarizes the project goals/objectives and proposed functional uplift based on restoration activities and observations of two reference areas located in the vicinity of the Site. Goals and objectives target functional uplift identified in the Travis, Tickle, Little Alamance LWP and based on stream/wetland functional assessments developed by the regulatory agencies.

Project Goals and Objectives

Project Goal/Objective	How Goal/Objective will be Accomplished			
Improve Hydrology				
Restore Floodplain Access	Building a new channel at the historic floodplain elevation to restore overbank flows			
Restore Wooded Riparian Buffer	Planting a woody riparian buffer			
Restore Stream Stability				
Improve Sediment Transport to Convert the UTs from Sand/Silt Dominated to Gravel/Cobble Dominated Streams	Providing proper channel width and depth, stabilizing channel banks, providing gravel/cobble substrate, planting a woody riparian buffer, and removing cattle			
Improve Stream Geomorphology				
Increase Surface Storage and Retention	Building a new channel at the historic floodplain elevation restoring			
Restore Appropriate Inundation/Duration	overbank flows, removing cattle, scarifying compacted soils, and planting woody vegetation			
Increase Subsurface Storage and Retention	Raising the stream bed elevation and rip compacted soils			
	Improve Water Quality			
Increase Upland Pollutant Filtration	Planting a native, woody riparian buffer			
Increase Thermoregulation	Planting a native, woody riparian buffer			
Reduce Stressors and Sources of Pollution	Removing cattle and other agricultural inputs			
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	Raising the stream bed elevation, restoring overbank flows, planting with woody vegetation, removing cattle, increasing surface storage and retention, and restoring appropriate inundation/duration			
Increase Energy Dissipation of Overbank/Overland Flows/Stormwater Runoff	Raising the stream bed elevation, restoring overbank flows, and planting with woody vegetation			
Restore Habitat				
Restore In-stream Habitat	Building a stable channel with a cobble/gravel bed and planting a woody riparian buffer			
Restore Stream-side Habitat	DI .: 1 CC			
Improve Vegetation Composition and Structure	Planting a woody riparian buffer			

Project construction was completed April 6, 2016 and planting was completed April 8, 2016. Site activities included the restoration of perennial and intermittent stream channels, enhancement (Level II) of perennial stream channel, and re-establishment of riparian wetlands. Priority I restoration of intermittent channels at the Site is imperative to provide significant functional uplift to Site hydrology, water quality, and habitat, in addition to restore adjacent streamside, riparian wetlands. A total of **3581.1 Stream Mitigation Units** (SMUs) and **0.5 Riparian Wetland Mitigation Units** (WMUs) are being provided as depicted in the following table.

Stream Mitigation Type	Perennial Stream (linear feet)	Intermittent Stream (linear feet)	Ratio	Stream Mitigation Units
Restoration	3147	90	1:1	3237
Restoration (See Notes below)**		122	1:5:1	81.3
Enhancement (Level II)	657	2.5:1		262.8
TOTAL	3804	212		3581.1
Wetland Mitigation Type	Acreage	Ratio	-	n Wetland tion Units
Riparian Re-establishment	0.5	1:1	(0.5
Riparian Enhancement	1.5*			
TOTAL	2.0			0.5

^{*} Wetland enhancement acreage is not included in mitigation credit calculations as per RFP 16-005568 requirements.

In addition, the landowner received a violation for riparian buffer impacts due to clearing of trees adjacent to streams draining to Jordan Lake (NOV-2013-BV-0001). As a result of this violation, the upper 122 linear feet of UT 3 has a reduced credit ratio (1.5:1). On-site visits conducted with USACE representatives determined that the functional uplift of project restoration to UT 3 would be satisfactory to generate credit at this ratio.

Stream Success Criteria

Monitoring and success criteria for stream restoration should relate to project goals and objectives. From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving vegetation success criteria. The following summarizes stream success criteria related to goals and objectives.

Space Purposefully Left Blank

^{**} Prior to Site selection, the landowner received a violation for unauthorized discharge of fill material into Waters of the United States. Fill resulted from unpermitted upgrades to a farm pond dam, including widening the dam footprint, dredging stream channel, and casting spoil material adjacent to the stream channel on jurisdictional wetlands. Prior to restoration activities the landowner was required to obtain an after-the-fact permit to resolve the violations of Section 301 of the Clean Water Act (Action ID:SAW-2014-00665). In addition, stream reaches and wetland areas associated with the violation have been removed from credit generation.

Stream Goals and Success Criteria

Project Goal/Objective	Stream Success Criteria				
Improve Hydrology					
Restore Floodplain Access	Two overbank events in separate monitoring years will be documented during the monitoring period.				
Restore Wooded Riparian Buffer	Attaining Vegetation Success Criteria.				
Restore Stream Stability	Cross-sections, monitored annually, will be compared to asbuilt measurements to determine channel stability and maintenance of channel geomorphology.				
Improve Stream Geomorphology	Convert stream channels from unstable G- and F-type channels to stable E- and C- type stream channels.				
Increase Surface Storage and Retention	Two overbank events in separate monitoring years, and				
Restore Appropriate Inundation/Duration	attaining Wetland and Vegetation Success Criteria.				
Increase Subsurface Storage and Retention	Two overbank events will be documented, in separate years, during the monitoring period and documentation of an elevated groundwater table (within 12 inches of the soil surface) for greater than 10 percent of the growing season during average climatic conditions.				
Improve Sediment Transport to Convert the UTs from Sand/Silt Dominated to Gravel/Cobble Dominated Streams	Pebble counts documenting coarsening of bed material from pre-existing conditions of sand and silt to post restoration conditions of gravel and cobble.				
Improv	e Water Quality				
Increase Upland Pollutant Filtration	Attaining Wetland and Vegetation Success Criteria (Sections 2.3 and 2.2)				
Increase Thermoregulation	Attaining Vegetation Success Criteria (Section 2.2).				
Reduce Stressors and Sources of Pollution	Fencing maintained throughout the monitoring period and encroachment within the easement eliminated.				
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	Removal of cattle, documentation of two overbank events in separate monitoring years, and attaining Vegetation Success Criteria (Section 2.2)				
Increase Energy Dissipation of Overbank/Overland Flows/Stormwater Runoff	Documentation of two overbank events in separate monitoring years and attaining Vegetation Success Criteria (Section 2.2)				
Res	tore Habitat				
Restore In-stream Habitat	Pebble counts documenting coarsening of bed material from pre-existing conditions of sand and silt to post restoration conditions of gravel and cobble, and attaining Vegetation Success Criteria (Section 2.2)				
Restore Stream-side Habitat	Attaining Vegetation Success Criteria (Section 2.2)				
Improve Vegetation Composition and Structure	Attaining Vegetation Success Criteria (Section 2.2)				

Vegetation Success Criteria

An average density of 320 planted stems per acre must be surviving in the first three monitoring years. Subsequently, 290 planted stems per acre must be surviving in year 4, 260 planted stems per acre in year 5, and 210 planted stems per acre in year 7. In addition, planted vegetation must average 10 feet in height in each plot at year 7 since this Site is located in the Piedmont. Volunteer stems may be considered on a case-by-case basis in determining overall vegetation success; however, volunteer stems should be counted separately from planted stems.

Wetland Success Criteria

Monitoring and success criteria for wetland re-establishment should relate to project goals and objectives. From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving vegetation success criteria. The following summarizes wetland success criteria related to goals and objectives.

Wetland Goals and Success Criteria

Project Goal/Objective	Wetland Success Criteria			
Improve Hydrology				
Restore Wooded Riparian Buffer	Attaining Vegetation Success Criteria.			
Increase Surface Storage and Retention				
Restore Appropriate Inundation/Duration	Two overbank events in separate monitoring years, and attaining Wetland and Vegetation Success Criteria.			
Increase Subsurface Storage and Retention	diddining Wediana and Vegetation Success Criteria.			
Improv	e Water Quality			
Increase Upland Pollutant Filtration	Attaining Wetland and Vegetation Success Criteria.			
Reduce Stressors and Sources of Pollution	Fencing maintained throughout the monitoring period and encroachment within the easement eliminated.			
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	Removal of cattle, documentation of two overbank events in separate monitoring years, and attaining Vegetation Success Criteria.			
Increase Energy Dissipation of Overbank/Overland Flows/Stormwater Runoff	Documentation of two overbank events in separate monitoring years, and attaining Vegetation Success Criteria.			
Restore Habitat				
Restore Stream-side Habitat	Attaining Vagatation Suggest Critaria			
Improve Vegetation Composition and Structure	Attaining Vegetation Success Criteria.			

According to the *Soil Survey of Alamance County*, the growing season for Alamance County is from April 17 – October 22 (USDA 1960). However, the start date for the growing season is not typical for the Piedmont region; therefore, for purposes of this project gauge hydrologic success will be determined using data from February 1 - October 22 to more accurately represent the period of biological activity. This will be confirmed annually by soil temperatures and/or bud burst. The growing season will be initiated each year on the documented date of biological activity. Photographic evidence of bud burst and field logs of date and temperature will be included in the annual monitoring reports.

Target hydrological characteristics include saturation or inundation for 10 percent of the monitored period (February 1-October 22), during average climatic conditions. During years with atypical climatic conditions, groundwater gauges in reference wetlands may dictate threshold hydrology success criteria (75 percent of reference). These areas are expected to support hydrophytic vegetation. If wetland parameters are marginal as indicated by vegetation and/or hydrology monitoring, a jurisdictional determination will be performed.

Summary of Monitoring Period/Hydrology Success Criteria by Year

Year	Soil Temperatures/Date Bud Burst Documented	•	
2016 (Year 1)	-	April 17*-October 22 (198 days)	19 days
2017 (Year 2)	Bud burst on red maple (<i>Acer rubrum</i>) and soil temperature of 58°F documented on February 28, 2017	February 28-October 22 (237 days)	23 days
2018 (Year 3)	Bud burst and soil temperature of 44°F documented on March 6, 2018	March 6-October 22 (231 days)	23 days
2019 (Year 4)	March 20, 2019**	March 20-October 22 (217 days)	21 days
2020 (Year 5)			-
2021 (Year 5)	-	-	-
2022 (Year 5)	-	-	-

^{*}Gauges were installed on May 5 during year 1 (2016); therefore, April 17 was used as the start of the growing season (NRCS).

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on the NC Division of Mitigation Services (NCDMS) website. All raw data supporting the tables and figures in the appendices are available from NCDMS upon request.

2.0 METHODOLOGY

Monitoring requirements and success criteria outlined in the latest guidance by US Army Corps of Engineers (USACE) in April 2003 (*Stream Mitigation Guidelines*) will be followed and are briefly outlined below. Monitoring data collected at the Site should include reference photos, plant survival analysis, channel stability analysis, and biological data, if specifically required by permit conditions.

Wetland hydrology is proposed to be monitored for a period of seven years (years 1-7). Riparian vegetation and stream morphology is proposed to be monitored for a period of seven years with measurements completed in years 1-3, year 5, and year 7. Monitoring reports for years 4 and 6 will include photo documentation of stream stability and wetland hydrology monitoring data. If monitoring demonstrates the Site is successful by year 5 and no concerns have been identified, Restoration Systems (RS) may propose to terminate monitoring at the Site and forego monitoring requirements for years 6 and 7. Early closure will only be provided through written approval from the USACE in consultation with the Interagency Review Team (NC IRT). Monitoring will be conducted by Axiom Environmental, Inc (AXE). Annual monitoring reports of the data collected will be submitted to the NCDMS by RS no later than December 31 of each monitoring year data is collected.

^{**}Based on data collected from a soil temperature data logger located on the Site.

2.1 Streams

Annual monitoring will include development of channel cross-sections and substrate on riffles and pools. Data to be presented in graphic and tabular format will include 1) cross-sectional area, 2) bankfull width, 3) average depth, 4) maximum depth, 5) width-to-depth ratio, 6) bank height ratio, and 7) entrenchment ratio. Longitudinal profiles will not be measured routinely unless monitoring demonstrates channel bank or bed instability, in which case, longitudinal profiles may be required by the USACE along reaches of concern to track changes and demonstrate stability.

Visual assessment of in-stream structures will be conducted to determine if failure has occurred. Failure of a structure may be indicated by collapse of the structure, undermining of the structure, abandonment of the channel around the structure, and/or stream flow beneath the structure. In addition, visual assessments of the entire channel will be conducted in years 1-3, 5, and 7 of monitoring as outlined in NCDMS *Monitoring Requirements and Reporting Standards for Stream and/or Wetland Mitigation*. Areas of concern will be depicted on a plan view figure identifying the location of concern along with a written assessment and photograph of the area.

Year 4 (2019) stream measurements were not required per the mitigation plan. As a whole, monitoring measurements indicate minimal changes in the cross-sections as compared to as-built data during Year 3 (2018) monitoring. The IRT visited the Site on May 3rd, 2018. A copy of the site visit notes are provided in Appendix G.

Immediately after construction, before ground cover was fully established, multiple heavy rain events (2+ inches) caused some sedimentation in the streambed. This aggradation can be seen in several Year 1 (2016) cross-sections, and it appeared to be reduced and stabilized during Years 2-3 (2017-2018).

The year 1 (2016) measurements for cross-sections 9 and 10 on UT-1 showed stream bed erosion when compared with as-built data. Stream bed erosion was noted shortly after as-built measurements were taken, and were the result of the above mentioned rain events. It was evident bed material used during construction in this area was finer than it should have been. Two riffles showed bed erosion, totaling approximately 50 feet in length (approximately 1 percent of the project length). RS created and implemented a remedial action plan during late winter of 2016/2017 (see Section 3.0 and Appendix G). These repairs appear stable during Year 4 (2019) monitoring, and they will continue to be monitored during subsequent monitoring years.

Across the site, all in-stream structures are intact and functioning as designed. No stream areas of concern were identified during Year 4 (2019) monitoring; however, three small areas of bank erosion were observed in the Enhancement (Level II) reach of Travis Creek. The pre-construction condition of Travis Creek included some stream bank erosion, and with the large amount of rainfall the Site received during Year 3 (2018), some of this erosion became more apparent. These areas will continue to be monitored for any significant change, but the erosion is not expected to cause any major stream stability problems. Additionally, several monitoring cross-sections (Travis Creek XS-2, Travis Creek XS-4, UT1 XS-2, UT2 XS-5, and UT2 XS-8) are showing Bank Height Ratios of <1. The bank height ratios were calculated based on fixing the cross-sectional area from last year's data, in accordance with the 2018 NCDMS "Standard Measurement of the BHR Monitoring Parameter" guidance. Each of these cross-sections exhibited a small amount of aggradation during Year 3 (2018). It is expected that this aggradation is the product of natural sediment transport and will not cause any long-term stream issues. Tables for annual quantitative assessments are included in Appendix D.

2.2 Vegetation

After planting was completed on April 8, 2016, an initial evaluation was performed to verify planting methods and to determine initial species composition and density. Supplemental planting and additional Site modifications will be implemented, if necessary.

During quantitative vegetation sampling, 14 sample plots (10-meter by 10-meter) were installed within the Site as per guidelines established in *CVS-EEP Protocol for Recording Vegetation*, *Version 4.2* (Lee et al. 2008). In each sample plot, vegetation parameters to be monitored include species composition and species density. Visual observations of the percent cover of shrub and herbaceous species will also be documented by photograph.

Working with Carolina Silvics, RS planted 1030 containerized trees consisting of 755 1-gallon pots and 275 3-gallon pots during the week of December 20th, 2016, which included the following species: *Betula nigra*, *Fraxinus pennsylvanica*, *Platanus occiendentalis*, *Quercus falcata*, *Quercus nigra*, *Quercus palustris*, *Quercus phellos*, and *Quercus rubra*. A remedial planting plan report detailing location of planting and density is provided in Appendix G.

Year 4 (2019) stem count measurements were performed in October 2019 and indicate an average of 387 planted stems per acre (excluding livestakes) across the Site; therefore, the Site is meeting vegetation success criteria. Ten of the fourteen individual vegetation plots met success criteria based on planted stems alone. When including naturally recruited stems of green ash (*Fraxinus pennsylvanica*) and American sycamore (*Plantanus occidentalis*), Plots 2, 3, 9 and 13 were above success criteria. Year 4 (2019) vegetation plot information can be found in Appendix C.

2.3 Wetland Hydrology

Three groundwater monitoring gauges were installed to take measurements after hydrological modifications were performed at the Site. Hydrological sampling will continue throughout the growing season at intervals necessary to satisfy jurisdictional hydrology success criteria (USEPA 1990). In addition, a surface water gauge was installed in Tributary 3 to monitor flow regime of the tributary. Approximate locations of gauges are depicted on Figure 2 (Appendix A).

Hydrological sampling will continue throughout the growing season at intervals necessary to satisfy jurisdictional hydrology success criteria (USEPA 1990). In addition, an on-site rain gauge will document rainfall data for comparison of groundwater conditions with extended drought conditions and floodplain crest gauges will confirm overbank flooding events. Two of the three groundwater gauges were successful in year 4 (2019) (Appendix E). The groundwater gauge deemed unsuccessful was due to a three-day period where the groundwater dropped below 12 inches. Tributary 3 exhibited evidence of channel formation during year 4 (2019). Additionally, the surface water gauge documented 145 consecutive days of flow.

2.4 Biotic Community Change

Changes in the biotic community are anticipated from a shift in habitat opportunities as tributaries are restored. In-stream, biological monitoring is proposed to track the changes during the monitoring period. The benthic macroinvertebrate community will be sampled using NCDWQ protocols found in the *Standard Operating Procedures for Benthic Macroinvertebrates* (NCDWQ 2006) and *Benthic Macroinvertebrate Protocols for Compensatory Stream Restoration Projects* (NCDWQ 2001). Biological sampling of benthic macroinvertebrates will be used to compare preconstruction baseline data with postconstruction restored conditions.

Two benthic macroinvertebrate monitoring locations will be established within restoration reaches. Postrestoration collections will occur in the approximate location of the prerestoration sampling. Benthic macroinvertebrate samples will be collected from individual reaches using the Qual-4 collection method. Sampling techniques of the Qual-4 collection method consist of kick nets, sweep nets, leaf packs, and visual searches. Preproject biological sampling occurred on June 26, 2014; postproject monitoring will occur in June of monitoring years 2-5.

Identification of collected organisms will be performed by personnel with North Carolina Division of Water Resources (NCDWR) or by a NCDWR certified laboratory. Other data collected will include D50 values/NCDWR habitat assessment forms. Biological sampling for year 4 (2019) occurred on June 12, 2019. The samples were sent to Pennington and Associates, a NCDWR certified laboratory, for identification and analysis. Results and Habitat Assessment Dataforms are included in Appendix F.

3.0 REMEDIAL ACTION PLAN

A remedial action plan was developed in order to address stream and vegetation problem areas observed during Year 1 (2016) monitoring. The completed remedial action report can be found in Appendix G.

3.1 Stream

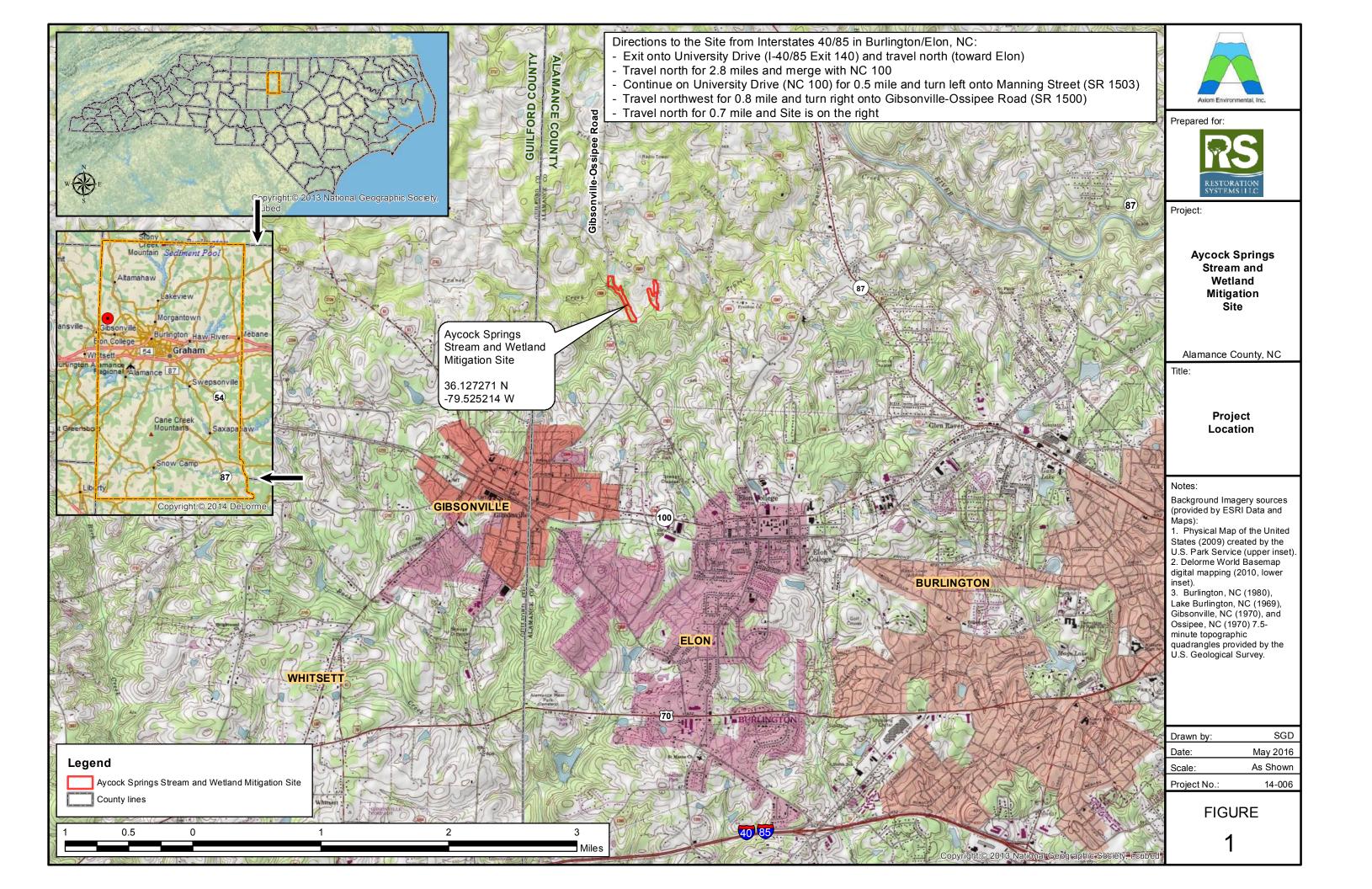
The degradation observed during Year 1 (2016) in and adjacent to cross-sections 9 and 10 on UT-1 encompasses approximately 12 linear feet and 15 linear feet of stream, respectively (<1 percent of the project length). As noted above, bed material placed during construction was too fine. All of UT-1 used bed material harvested on-site. The material used along these stream reaches was too fine and washed from the riffles during heavy rainfall events, resulting in minor bed scour and a small, less than 6 inch head cut beginning to develop at the top of riffle. Suitable sized channel bed material was installed on February 23, 2017 at the proper elevation in the two riffles within UT-1. Bed material was installed such that bank toe protection is provided and planting with willow stakes will occur. Bank toe protection designates that channel bed material will extend up the lower one-third of the bank. This will be monitored by existing established cross-sections 9 and 10.

3.2 Vegetation

Multiple factors were contributing to poor vegetative success in Year 1 (2016) including a later than desired initial bare-root planting, heavy herbaceous competition primarily from fescue (Site was previously a cattle pasture), and sporadic rain events, which left upland areas of the site dry for extended periods of the growing season. Greater survival of planted species was observed within riparian areas. Upland areas of the site had the lowest survival rates

The remedial action plan supplemented the bare-root planting over 5.44 acres with 1030 additional trees (755 1-gallon pots and 275 3-gallon pots). The remedial action plan figure (Appendix G) details the areas that received remedial planting along with density and number of species being placed into vegetation plots. Working with Carolina Silvics, RS acquired and re-planted identified areas during the week of December 20th, 2016. Species of planted tree included *Betula nigra*, *Fraxinus pennsylvanica*, *Platanus occiendentalis*, *Quercus falcata*, *Quercus nigra*, *Quercus palustris*, *Quercus phellos*, and *Quercus rubra*.

Treatment of invasive plant species continued during 2019 throughout the Site, and Restoration Systems will continue to treat and monitor the site for invasive species throughout the monitoring period. Previous treatments on the small patch of cattails at the confluence of UT-1 and UT-2 was successful. However, in the Spring of 2019, cattail regeneration was noted within the area of concern. Treatment was conducted in July 2019 and will continue as needed. Additional dense herbaceous vegetation within UT-2, was noted during the spring 2019. The vegetation appeared to be impeding the natural hydrology of the stream. Treatment was conducted July 2019 and will continue as needed. See Appendix G (Herbicide Application Forms) for detailed account of site-wide treatments.


4.0 REFERENCES

- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. United States Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- Environmental Laboratory. 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0). United States Army Engineer Research and Development Station, Vicksburg, Mississippi.
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2001. Benthic Macroinvertebrate Monitoring Protocols for Compensatory Mitigation. 401/Wetlands Unit, Department of Environment and Natural Resources. Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2006. Standard Operating Procedures for Benthic Macroinvertebrates. Biological Assessment Unit, North Carolina Department of Environment and Natural Resources. Raleigh, North Carolina.
- North Carolina Division of Mitigation Services (NCDMS 2009). Cape Fear River Basin Restoration Priorities 2009 (online). Available: http://portal.ncdenr.org/c/document_library/get_file?uuid= 864e82e8-725c-415e-8ed9-c72dfcb55012&groupId=60329
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- United States Department of Agriculture (USDA). 1960. Soil Survey of Alamance County, North Carolina. Soil Conservation Service.
- United States Environmental Protection Agency (USEPA). 1990. Mitigation Site Type Classification (MiST). EPA Workshop, August 13-15, 1989. EPA Region IV and Hardwood Research Cooperative, NCSU, Raleigh, North Carolina.

APPENDIX A

PROJECT BACKGROUND DATA AND MAPS

- Figure 1. Vicinity Map
- Table 1. Project Components and Mitigation Credits
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Baseline Information and Attributes

Table 1. Project Components and Mitigation Credits

Mitigation Credits						
Stream Stream Riparian Wetland Nonriparian Wetland						
Restoration Enhancement		Re-establishment	Re-establishment			
3237	344.1	0.5				

Projects Components

Station Range	Existing Linear Footage/ Acreage	Priority Approach	Restoration/ Restoration Equivalent	Restoration Linear Footage/ Acreage	Mitigation Ratio	Mitigation Credits	Comment
UT 1 Station 10+04 to 23+21	1173	PI	Restoration	1317-24= 1293	1:1	1293	24 lf of UT 1 is located outside of easement and is not credit generating
UT 2 Station 10+00 to 16+75	723	PI	Restoration	675	1:1	675	
UT 3 Station 10+00 to 11+22	147	PI	Restoration	122	1.5:1	81.3	*** The upper 122 linear feet of channel is in a violation area and is generating credit at a reduced ratio of 1.5:1
UT 3 Station 11+22 to 12+12	16	PI	Restoration	90	1:1	90	
UT 4 Station 10+00 to 14+13	448	PI	Restoration	413-107= 306	1:1	306	****The upper 107 linear feet of channel is in a violation area and is not credit generating
Travis Creek Station 10+00 to 15+78	578		EII	578-20= 558	2.5:1	223.2	The upper 20 linear feet of Travis Creek is within a powerline easement and is not credit generating
Travis Creek Station 15+78 to 17+87	274	PII	Restoration	209	1:1	209	
Travis Creek Station 17+87 to 18+86	99		EII	99	2.5:1	39.6	
Travis Creek Station 23+71 to 30+35	936	PI	Restoration	664	1:1	664	

Table 1. Project Components and Mitigation Credits (continued)

Component Summation							
Restoration Level Stream (linear footage) Riparian Wetland (acreage) Nonriparian Wetland (acreage							
Restoration	3237	0.5					
Enhancement (Level 1)	122						
Enhancement (Level II)	657						
Enhancement		1.5**					
Totals	4016						
Mitigation Units	3581.1 SMUs	0.5 Riparian WMUs	0.00 Nonriparian WMUs				

^{**}Wetland enhancement acreage is not included in mitigation credit calculations as per RFP 16-005568 requirements.

^{***}Prior to Site selection, the landowner received a violation for riparian buffer impacts due to clearing of trees adjacent to streams draining to Jordan Lake (NOV-2013-BV-0001). As a result of this violation, the upper 122 linear feet of UT 3 has a reduced credit ratio of 1.5:1. On-site visits conducted with USACE representatives determined that the functional uplift of project restoration to UT 3 would be satisfactory to generate credit at this ratio.

^{****} Prior to Site selection, the landowner received a violation for unauthorized discharge of fill material into Waters of the United States. Fill resulted from unpermitted upgrades to a farm pond dam, including widening the dam footprint, dredging stream channel, and casting spoil material adjacent to the stream channel on jurisdictional wetlands. Prior to restoration activities the landowner was required to obtain an after-the-fact permit to resolve the violations of Section 301 of the Clean Water Act (Action ID:SAW-2014-00665). In addition, stream reaches and wetland areas associated with the violation area have been removed from credit generation – UT 4 begins credit generation at Station 11+07).

Table 2. Project Activity and Reporting History

Activity or Deliverable	Stream Monitoring Complete	Monitoring Monitoring		Completion or Delivery
Technical Proposal (RFP No. 16-005568)				October 2013
DMS Contract No. 5791				February 2014
Mitigation Plan			October 2014	May 2015
Construction Plans				June 2015
Construction Earthwork				April 6, 2016
Planting				April 8, 2016
As-Built Documentation	April 6, 2016	April 13, 2016	April 2016	May 2016
Year 1 Monitoring	October 18, 2016	October 13, 2016	October 2016	December 2016
Supplemental Planting				December 2016
Year 2 Monitoring	April 19-20, 2017	July 25, 2017	October 2017	November 2017
Year 3 Monitoring	April 16-17, 2018	July 19, 2018	October 2018	October 2018
Year 4 Monitoring	N/A	October 2019	October 2019	January 2020

Table 3. Project Contacts Table

Table 3. Project Contacts Table	
Full Delivery Provider	Construction Contractor
Restoration Systems	Land Mechanic Designs
1101 Haynes Street, Suite 211	780 Landmark Road
Raleigh, North Carolina 27604	Willow Spring, NC 27592
Worth Creech 919-755-9490	Lloyd Glover 919-639-6132
Designer	Planting Contractor
Axiom Environmental, Inc.	Carolina Silvics, Inc.
218 Snow Avenue	908 Indian Trail Road
Raleigh, NC 27603	Edenton, NC 27932
Grant Lewis 919-215-1693	Mary-Margaret McKinney 252-482-8491
Construction Plans and Sediment and	As-built Surveyor
Erosion Control Plans	K2 Design Group
Sungate Design Group, PA	5688 US Highway 70 East
915 Jones Franklin Road	Goldsboro, NC 27534
Raleigh, NC 27606	John Rudolph 919-751-0075
Joshua G. Dalton, PE 919-859-2243	
Joshua G. Dalton, PE 919-859-2243	Baseline & Monitoring Data Collection
Joshua G. Dalton, PE 919-859-2243	Baseline & Monitoring Data Collection Axiom Environmental, Inc.
Joshua G. Dalton, PE 919-859-2243	
Joshua G. Dalton, PE 919-859-2243	Axiom Environmental, Inc.

Table 4. Project Attribute Table

Project Info	ormation			
Project Name	Ay	cock Springs F	Restoration Site	2
Project County	Alamance County, North Carolina			
Project Area (acres)		15		
Project Coordinates (latitude & latitude)	3	36.127271°N, 7	9.525214°W	
Project Watershed Sur	mmary Inform	ation		
Physiographic Province		Piedm	ont	
Project River Basin		Cape I	Fear	
USGS HUC for Project (14-digit)		03030002	030010	
NCDEQ Sub-basin for Project		03-06	-02	
Project Drainage Area (acres)		26-30	008	
Project Drainage Area Percentage of Impervious Area		<2%	⁄o	
Reach Summary	Information			
Parameters	Travis Cr	UT 1/UT2	UT 3	UT 4
Length of reach (linear feet)	1550	1966	212	413
Valley Classification		alluv	ial	
Drainage Area (acres)	3008	68	26	119
NCDWQ Stream ID Score		30.75/25.5	26.75	27.5
NCDWR Water Quality Classification		WS-V,	NSW	
Existing Morphological Description (Rosgen 1996)	(Cg 5/6-, Eg 5-,	and Fc 5-type	
Existing Evolutionary Stage (Simon and Hupp 1986)	IV	IV	III	III
Underlying Mapped Soils	Cecil, Helena	, Mixed Alluvi Land, Wo		ely Gullied
Drainage Class	Well-drained,	moderately we variable, poo		orly drained,
Hydric Soil Status		Nonhydric a	nd Hydric	
Slope	0.0023	0.0249	0.0153	0.0093
FEMA Classification	AE Special Hazard Flood Area			l Area
Native Vegetation Community	Piedmont Alluvial Forest/Dry-Mesic Oak-Hickory Forest			k-Hickory
Watershed Land Use/Land Cover (Site)	42% forest, 53% agricultural land, <5% low density residential/impervious surface			
Watershed Land Use/Land Cover (Cedarock Reference Channel)	65% forest, 30% agricultural land, <5% low density residential/impervious surface			
Percent Composition of Exotic Invasive Vegetation		< 59	%	

Table 4. Project Attribute Table (Continued)

Parameters		Wetland	ds								
Wetland acreage		1.6									
Wetland Type		Riparian									
Mapped Soil Series	Wors	sham and Mixed	Alluvial Land								
Drainage Class		Poorly dra	ined								
Hydric Soil Status		Hydric	;								
Source of Hydrology	Gr	oundwater, strea	am overbank								
Hydrologic Impairment	Incised s	treams, compact	ted soils, livestock								
Native Vegetation Community	Piedmo	Piedmont/Low Mountain Alluvial Forest									
Percent Composition of Exotic Invasive Vegetation		<5%									
Regulatory	Considerations										
Regulation	Applicable?	Resolved?	Supporting Documentation								
Waters of the United States-Section 401	Yes	Resolved	404 Permit								
Waters of the United States-Section 404	Yes	Resolved	401 Certification								
Endangered Species Act	No		CE Doc.								
Historic Preservation Act	No		CE Doc.								
Coastal Zone Management Act	No		NA								
FEMA Floodplain Compliance	Yes	In progress	CLOMR/LOMR								
Essential Fisheries Habitat	No		NA								

APPENDIX B

VISUAL ASSESSMENT DATA

Figure 2. Current Conditions Plan View (CCPV)
Tables 5A-5E. Visual Stream Morphology Stability Assessment
Table 6. Vegetation Condition Assessment
Vegetation Plot Photographs

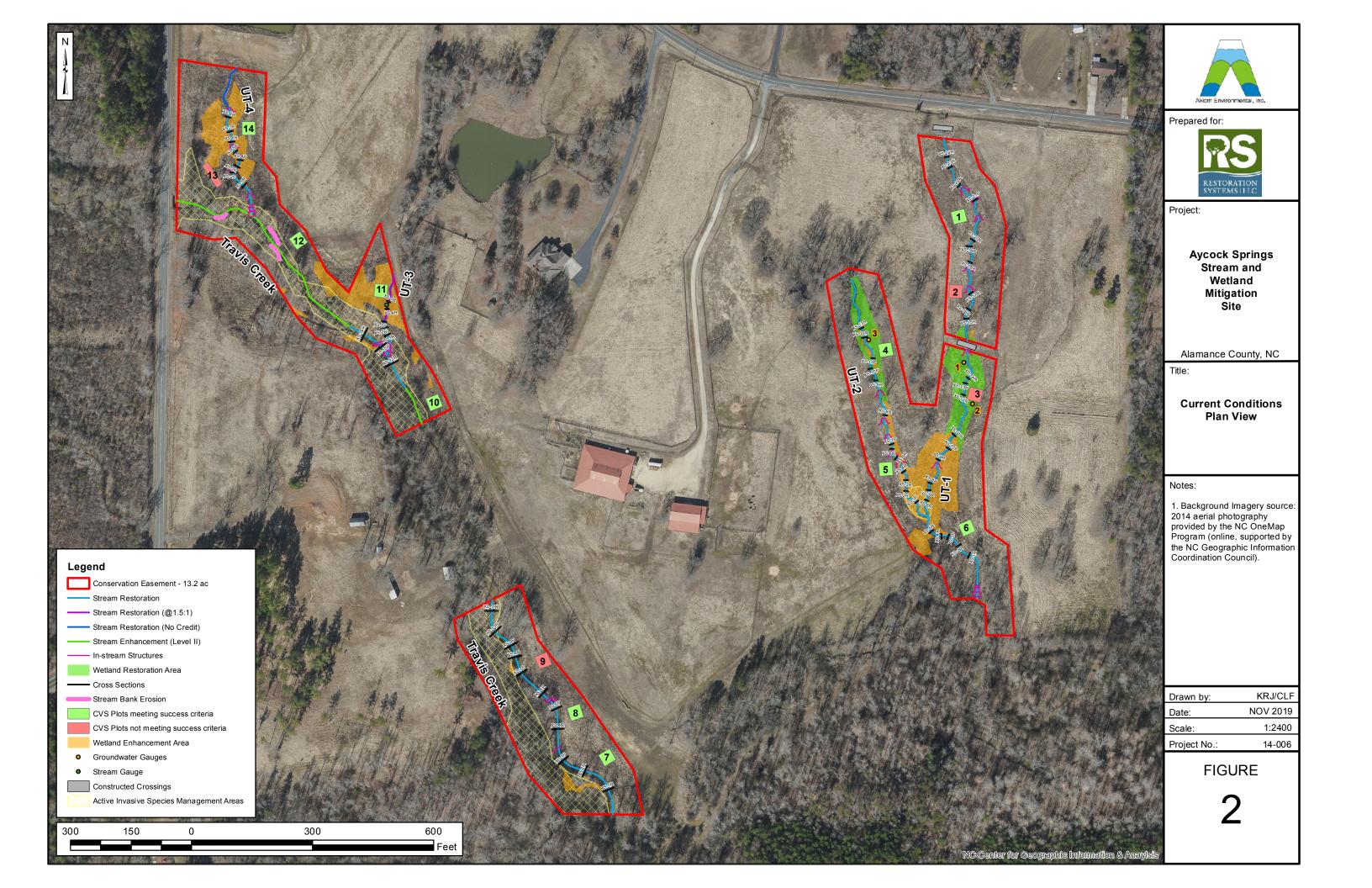


Table 5A <u>Visual Stream Morphology Stability Assessment</u>
Reach ID Aycock Springs - Travis Creek
Assessed Length 1550

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	10	10			100%			
	3. Meander Pool Condition	Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	9	9			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	9	9			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	9	9			100%			
		Thalweg centering at downstream of meander (Glide)	9	9			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			3	117	96%			96%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	3	117	96%	0	0	96%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	9	9			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	9	9			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	9	9			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	9	9			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio > 1.6 Rootwads/logs providing some cover at base-flow.	9	9			100%			

Table 5B Visual Stream Morphology Stability Assessment
Reach ID Aycock Springs UT1
Assessed Length 1317

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	45	45			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	44	44			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	44	44			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	44	44			100%			
		Thalweg centering at downstream of meander (Glide)	44	44			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	10	10			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	10	10			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	10	10			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	10	10 10			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	10	10			100%			

Table 5C <u>Visual Stream Morphology Stability Assessment</u>
Reach ID Aycock Springs UT2
Assessed Length 675

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	25	25			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	24	24			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	24	24			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	24	24			100%			
		Thalweg centering at downstream of meander (Glide)	24	24			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	6	6			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	6	6			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	6	6			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	6	6			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	6	6			100%			

Table 5D <u>Visual Stream Morphology Stability Assessment</u>
Reach ID Aycock Springs UT3
Assessed Length 212

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	9	9			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	8	8			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	8	8			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	8	8			100%			
		Thalweg centering at downstream of meander (Glide)	8	8			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	1	1			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	1	1			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	1	1			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	1	1			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	1	1			100%			

Table 5E Visual Stream Morphology Stability Assessment
Reach ID Aycock Springs UT4
Assessed Length 413

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	9	9			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	8	8			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	8	8			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	8	8			100%			
		Thalweg centering at downstream of meander (Glide)	8	8			100%			
	•									
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	5	5			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	5	5		100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	5	5 5			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	5	5			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	5	5			100%			

Table 6

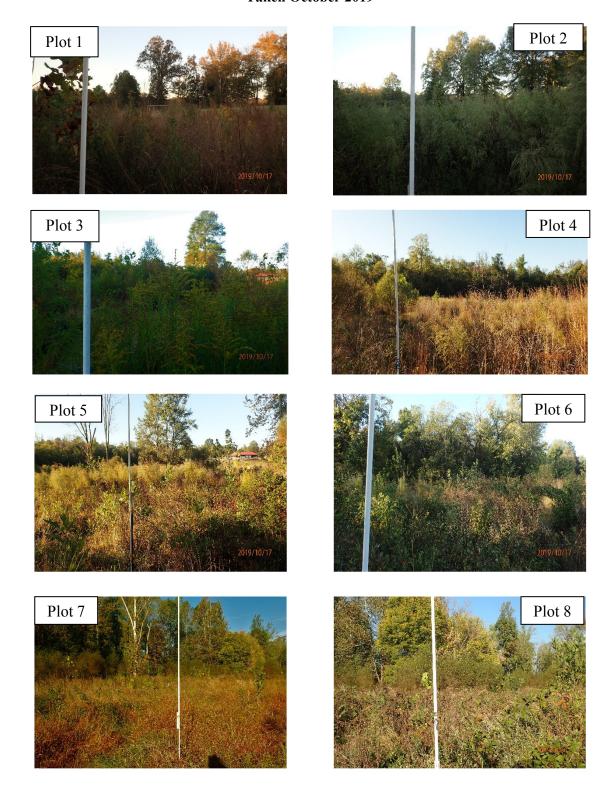
Vegetation Condition Assessment

Aycock Springs

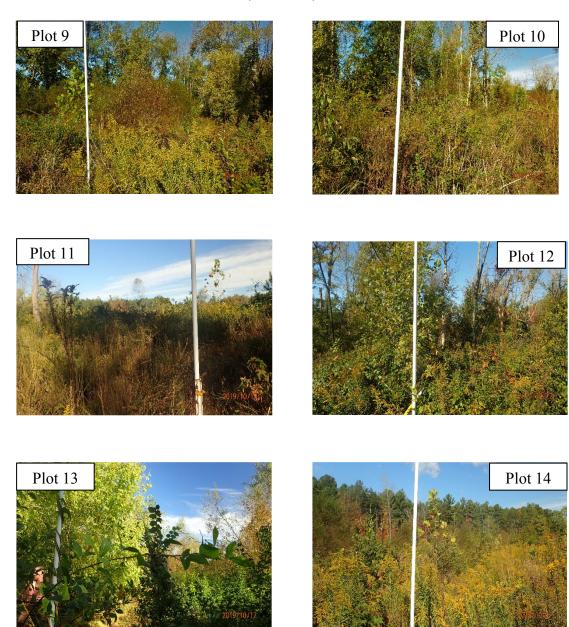
Planted Acreage¹

11.9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1110							
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage		
1. Bare Areas	None	0.1 acres	none	0	0.00	0.0%		
2. Low Stem Density Areas	None	1550	none	0	0.00	0.0%		
2B. Low Planted Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%		
			Total	0	0.00	0.0%		
3. Areas of Poor Growth Rates or Vigor	None	0.25 acres	none	0	0.00	0.0%		
	of Poor Growth Rates or Vigor None 0.25 acres Cumu							


Easement Acreage²

13.3


Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
	Management of Chinese privet and multiflora rose is active and ongoing along Travis Creek. There is also ongoing treatment for cattail along UT1 and UT2. 2017-18 invasives management has improved vegetation condition in these areas, however treatment is ongoing.	1000 SF	yellow hatch	3	2.46	18.5%
5. Easement Encroachment Areas ³	None	none	none	0	0.00	0.0%

- 1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.
- 2 = The acreage within the easement boundaries.
- 3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.
- 4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by DMS such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in *red italies* are of particular interest given their extreme risk/threat level for mapping as points where isolated specimens are found, particularly for situations where the condition for an area is somewhere between isolated specimens and dense, discreet pathenes. In any case, the point or polygon/area feature can be symbolized to describe things like high or low concern and species can be listed as a map inset

Aycock Springs Year 4 Vegetation Monitoring Photographs Taken October 2019

Aycock Springs Year 4 Vegetation Monitoring Photographs Taken October 2019 (continued)

APPENDIX C

VEGETATION PLOT DATA

- Table 7. Vegetation Plot Criteria Attainment
- Table 8. CVS Vegetation Plot Metadata
- Table 9. Total and Planted Stems by Plot and Species

Table 7. Vegetation Plot Criteria Attainment Based on Planted Stems

Vegetation Plot ID	Vegetation Survival Threshold Met?	MY 4 (2019) Planted Stems	MY 4 (2019) All Stems	Tract Mean
1	Yes	768	1174	
2	No*	283	445	
3	No*	283	688	
4	Yes	364	1416	
5	Yes	404	526	
6	Yes	607	688	
7	Yes	485	526	71 40/
8	Yes	364	485	71.4%
9	No*	242	323	
10	Yes	364	971	
11	Yes	404	688	
12	Yes	364	404	
13	No*	121	445	
14	Yes	364	485	
	Total =	387	662	

^{*}These plots did not meet success criteria based on planted stems only; however, when including naturally recruited stems of green ash (*Fraxinus pennsylvanica*) and American sycamore (*Platanus occidentalis*) these plots were above success criteria.

Table 8. CVS Vegetation Plot Metadata

Table 8. CVS Vegetation Flot IV	
Report Prepared By	Corri Faquin
Date Prepared	10/31/2019 8:58
database name	RS-Aycock_2019-v2.3.1.mdb
database location	S:\Business\Projects\14\14-006 Aycock Springs Detailed\2019 YEAR-04\CVS
computer name	PHILLIP-LT
file size	56627200
DESCRIPTION OF WORKSHE	EETS IN THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all
Proj, total stems	natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead
ALL Stems by Plot and spp	and missing stems are excluded.
PROJECT SUMMARY	
Project Code	14-006
project Name	Aycock Springs
Description	
River Basin	Cape Fear
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	14

Table 9. Planted and Total Stems

Project Code 14.006. Project Name: Aycock Springs

																Current	t Plot D	ata (MY4	2019)												
			14.0	006-01-	0001	14.0	06-01-0	0002	14.0	06-01-	0003	14.0	006-01-0	0004	14.0	06-01-0	0005	14.006	6-01-0006	14.	006-01	-0007	14.006-01-0008			14.006-01-0009			14.0	006-01-0	010
Scientific Name	Common Name	Species Type	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS P	-all T	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer negundo	boxelder	Tree																													ĺ .
Acer rubrum	red maple	Tree																		2								2			
Betula nigra	river birch	Tree				1	1	1															1	1	. 1						Ī
Callicarpa	beautyberry	Shrub																													i
Callicarpa americana	American beautyberry	Shrub																													Ī
Carpinus caroliniana	American hornbeam	Tree																4	4	4						1	1	1			ĺ
Cephalanthus occidentalis	common buttonbush	Shrub																													ĺ
Cornus amomum	silky dogwood	Shrub	9	9	9	3	3	3	3	3	3	3	3	3	3	3	3	10	10 1	0 5	5 5	5 5	5 5	5	5	1	1	1	. 3	3	4
Cornus florida	flowering dogwood	Tree																													
Diospyros virginiana	common persimmon	Tree																					1	1	. 1				1	. 1	1
Fraxinus pennsylvanica	green ash	Tree			5			3			9	1	1	27	1	1	4					1	1 2	2	. 2	1	1	1	. 1	. 1	10
Liquidambar	sweetgum	Tree																													
Nyssa	tupelo	Tree																		3	3	3 3	3								
Nyssa sylvatica	blackgum	Tree																		1	1 1	1 1	1								
Platanus occidentalis	American sycamore	Tree	2	. 2	6							1	1	1						1	1 1	1 1	1		2	1	1	1			
Quercus	oak	Tree																													í T
Quercus alba	white oak	Tree	2	. 2	3																										ĺ
Quercus falcata	southern red oak	Tree													3	3	3									1	1	1			ĺ
Quercus michauxii	swamp chestnut oak	Tree							2	2	2	4	4	4																	ĺ
Quercus nigra	water oak	Tree													1	1	1														
Quercus pagoda	cherrybark oak	Tree																													
Quercus phellos	willow oak	Tree																		1	1	1 1	1						3	3	4
Quercus rubra	northern red oak	Tree	6	6	6	2	2	2	2	2	2				2	2	2			1	1 1	1 1	1			1	1	1	. 1	. 1	2
Salix nigra	black willow	Tree																													
Sambucus canadensis	Common Elderberry	Shrub				1	1	2										1	1	1											3
Taxodium distichum	bald cypress	Tree									1														1						
Ulmus	elm	Tree																													i
Ulmus alata	winged elm	Tree																													
Ulmus americana	American elm	Tree																													
		Stem count	19	19	29	7	7	11	7	7	17	9	9	35	10	10	13	15	15 1	7 12	2 12	2 13	3 9	9	12	6	6	8	9	9	24
		size (ares)		1			1			1			1			1			1		1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02		(0.02		0.02			0.02			0.02			0.02	
		Species count	4	4	5	4	4	5	3	3	5	4	4	4	5	5	5	3	3	4 6	6	5 7	7 4	4	6	6	6	7	5	, 5	6
	:	Stems per ACRE	768.9	768.9	1174	283.3	283.3	445.2	283.3	283.3	688	364.2	364.2	1416	404.7	404.7	526.1	607	607 68	485.6	485.6	5 526.1	364.2	364.2	485.6	242.8	242.8	323.7	364.2	364.2	971.2

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%

PnoLS = Planted excluding livestakes P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

Fails to meet requirements by more than 10% T includes natural recruits

Table 9. Planted and Total Stems (continued)
Project Code 14.006. Project Name: Aycock Springs

				Current Plot Data (MY4 2019)					Annual Means																			
			14.0	06-01-0	0011	14.0	06-01-0	0012	14.0	06-01-	0013	14.0	006-01-	0014	MY4 (2019)			MY3 (2018)			MY2 (2017)			MY1 (2016)		MY0 (2016)		
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all T
Acer negundo	boxelder	Tree									2						2						9			5		
Acer rubrum	red maple	Tree															4						2	2		5		
Betula nigra	river birch	Tree	1	1	1							2	2 2	2	5	5	5	7	7	8	5	5	5	5	5	5	9	9 (
Callicarpa	beautyberry	Shrub																					1					
Callicarpa americana	American beautyberry	Shrub																								1		
Carpinus caroliniana	American hornbeam	Tree	1	1	1			1							6	6	7	5	5	5	6	6	6	5	5	5	7	7 -
Cephalanthus occidentalis	common buttonbush	Shrub																					2			4		
Cornus amomum	silky dogwood	Shrub	2	2	2				1	1	. 1				48	48	49	46	46	46	49	49	49	52	52	52	57	57 57
Cornus florida	flowering dogwood	Tree	2	2	2										2	2	2	2	2	2	. 2	2	2	4	4	4	4	4 4
Diospyros virginiana	common persimmon	Tree													2	2	2	2	2	2	2	2	2	2 1	1	1	2	2 :
Fraxinus pennsylvanica	green ash	Tree			4	4	4	4			4	3	3	6	13	13	80	13	13	36	10	10	31	. 5	5	13	3	3 !
Liquidambar	sweetgum	Tree																					1					
Nyssa	tupelo	Tree													3	3	3											
Nyssa sylvatica	blackgum	Tree				1	1	1							2	2	2	2	2	2	3	3	3	3	3	3	6	6 (
Platanus occidentalis	American sycamore	Tree	1	1	4							1	. 1	1	7	7	16	7	7	10	7	7	9	1	1	1	5	5 !
Quercus	oak	Tree																			5	5	5	4	4	4	11	11 11
Quercus alba	white oak	Tree													2	2	3	1	1	1	. 1	1	1	. 1	1	1	2	2 :
Quercus falcata	southern red oak	Tree							1	1	1				5	5	5	5	5	5	4	4	4	ļ.				
Quercus michauxii	swamp chestnut oak	Tree				1	1	1				3	3	3	10	10	10	10	10	10	7	7	7	' 5	5	5		
Quercus nigra	water oak	Tree				1	1	1							2	2	2	2	2	2	1	1	1					
Quercus pagoda	cherrybark oak	Tree																			1	1	1	. 1	1	1	6	6 (
Quercus phellos	willow oak	Tree	3	3	3	1	1	1	1	1	. 1				9	9	10	9	9	9	9	9	9	6	6	6	18	18 18
Quercus rubra	northern red oak	Tree				1	1	1							16	16	17	14	14	16	12	12	12	11	11	11	13	13 13
Salix nigra	black willow	Tree																		1								i
Sambucus canadensis	Common Elderberry	Shrub													2	2	6	3	3	3	7	7	7	11	11	11	62	62 62
Taxodium distichum	bald cypress	Tree															2											
Ulmus	elm	Tree																					2	2				
Ulmus alata	winged elm	Tree									2						2											
Ulmus americana	American elm	Tree																								3		
		Stem count	10	10	17	9	9	10	3	3	11	9	9	12	134	134	229	128	128	158	131	131	171	. 115	115	141	205	205 216
		size (ares)		1			1			1			1			14			14			14			14			14
		size (ACRES)		0.02			0.02			0.02			0.02			0.35			0.35			0.35			0.35			0.35
		Species count	6	6	7	6	6	7	3	3	6	4	4	4	16	16	20	15	15	16	17	17	23	15	15	20	14	14 16
	9	Stems per ACRE	404.7	404.7	688	364.2	364.2	404.7	121.4	121.4	445.2	364.2	364.2	485.6	387.3	387.3	662	370	370	456.7	378.7	378.7	494.3	332.4	332.4	407.6	592.6	592.6 624.4

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%

PnoLS = Planted excluding livestakes P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

Fails to meet requirements by more than 10% T includes natural recruits

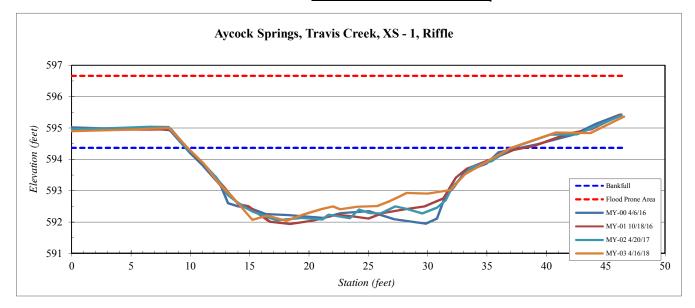
APPENDIX D. STREAM SURVEY DATA

(NOTE: Yr. 4 (2019) Stream Monitoring Not Required)

MR 0 - 3 Cross-section Plots

Table 11a-11e. Baseline Stream Data Summary

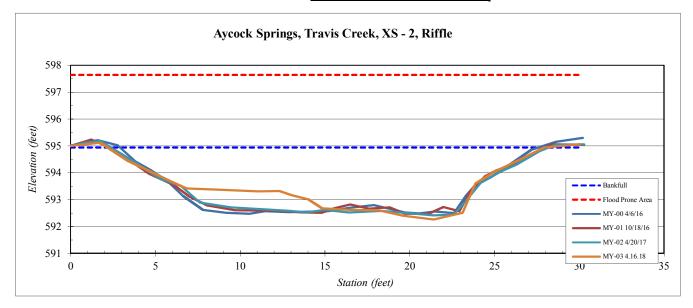
Table 12a-12f. Monitoring Data


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 1, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	594.90
4.1	594.93
8.2	595.00
9.6	594.45
11.1	593.87
12.4	593.25
13.7	592.75
15.2	592.07
16.5	592.20
18.1	592.04
19.6	592.24
21.0	592.41
22.0	592.49
22.6	592.41
24.1	592.48
25.7	592.51
26.7	592.65
27.6	592.80
28.2	592.93
30.0	592.91
31.9	593.0
33.2	593.5
34.8	593.9
36.9	594.3
40.8	594.9
43.7	594.8
46.5	595.4

SUMMARY DATA	
Bankfull Elevation:	594.4
Bankfull Cross-Sectional Area:	40.1
Bankfull Width:	27.3
Flood Prone Area Elevation:	596.7
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.3
Mean Depth at Bankfull:	1.5
W / D Ratio:	18.6
Entrenchment Ratio:	5.5
Bank Height Ratio:	1.0

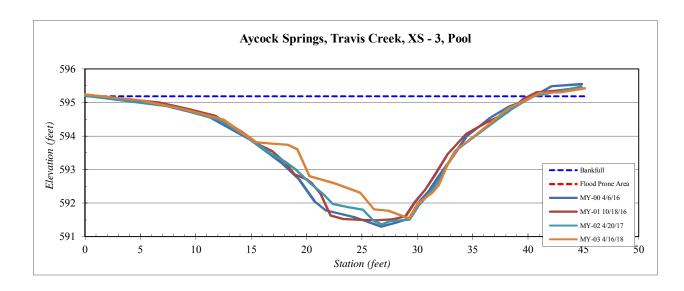
Stream Type C/E	
-----------------	--


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 2, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	595.00
1.7	595.12
3.3	594.45
5.9	593.68
6.8	593.41
8.9	593.36
11.0	593.30
12.3	593.32
13.0	593.16
14.0	593.01
14.8	592.67
16.5	592.62
18.2	592.61
19.6	592.40
21.4	592.26
23.1	592.51
23.9	593.59
25.0	594.02
26.5	594.48
27.9	594.94
30.0	595.1

SUMMARY DATA	
Bankfull Elevation:	594.9
Bankfull Cross-Sectional Area:	41.6
Bankfull Width:	25.8
Flood Prone Area Elevation:	597.6
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.7
Mean Depth at Bankfull:	1.6
W / D Ratio:	16.0
Entrenchment Ratio:	5.8
Bank Height Ratio:	1.00

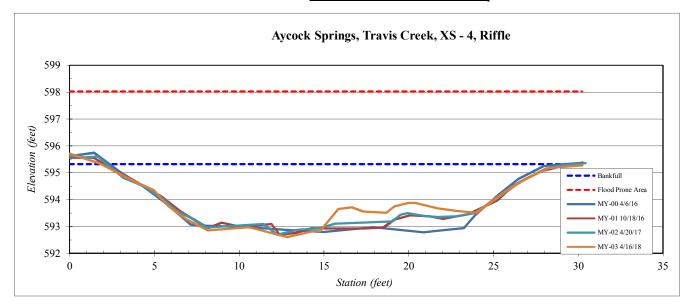
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 3, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	595.2
5.0	595.1
8.9	594.8
12.5	594.5
15.4	593.8
17.0	593.8
18.3	593.7
19.2	593.6
20.3	592.8
22.6	592.6
24.8	592.3
26.1	591.8
27.4	591.8
29.3	591.5
30.1	592.0
31.3	592.3
31.9	592.5
32.7	593.2
33.6	593.6
36.0	594.2
38.1	594.8
41.1	595.3
43.0	595.3
45.1	595.4

SUMMARY DATA	
Bankfull Elevation:	595.2
Bankfull Cross-Sectional Area:	57.2
Bankfull Width:	39.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.6
Mean Depth at Bankfull:	1.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

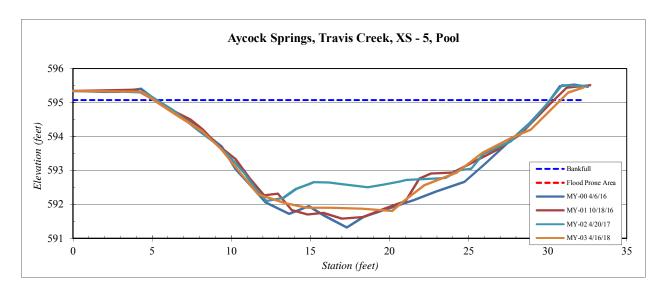
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 4, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Elevation
595.71
595.33
594.66
594.35
593.73
593.27
592.85
592.97
592.61
592.85
592.83
593.65
593.72
593.55
593.51
593.75
593.88
593.87
593.67
593.58
593.5
594.3
594.8
595.2
595.3

SUMMARY DATA	
Bankfull Elevation:	595.3
Bankfull Cross-Sectional Area:	43.8
Bankfull Width:	28.4
Flood Prone Area Elevation:	598.0
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.7
Mean Depth at Bankfull:	1.5
W / D Ratio:	18.4
Entrenchment Ratio:	5.3
Bank Height Ratio:	<1

Stream Type

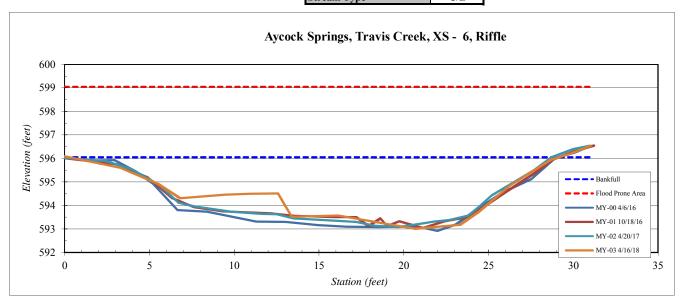

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 5, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	595.3
4.3	595.3
6.5	594.6
8.2	594.2
9.3	593.6
10.8	592.8
11.7	592.3
13.4	592.0
14.8	591.9
16.3	591.9
18.3	591.9
20.1	591.8
21.0	592.1
22.2	592.6
24.3	592.9
25.9	593.5
27.8	594.0
28.9	594.2
31.3	595.3
32.3	595.4

SUMMARY DATA	
Bankfull Elevation:	595.1
Bankfull Cross-Sectional Area:	52.3
Bankfull Width:	25.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.3
Mean Depth at Bankfull:	2.0
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.00

Stream Type C/E	
-----------------	--

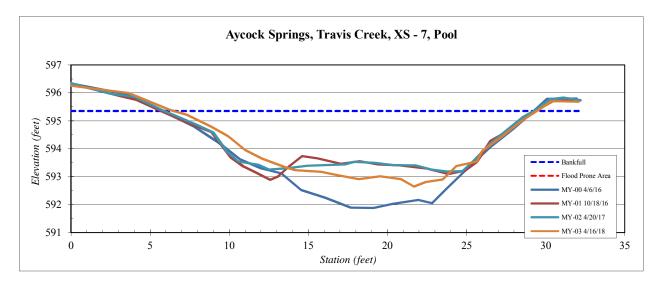
Note: Sediment Deposition in pool appears natural and is not expected to lead to instability.


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 6, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	596.09
3.3	595.61
5.5	594.93
6.8	594.30
9.4	594.46
11.0	594.50
12.6	594.52
13.4	593.52
16.1	593.57
18.7	593.25
20.6	593.01
23.3	593.18
24.4	593.73
26.2	594.84
28.7	595.95
29.8	596.20
31.0	596.54

SUMMARY DATA	
Bankfull Elevation:	596.1
Bankfull Cross-Sectional Area:	50.3
Bankfull Width:	28.9
Flood Prone Area Elevation:	599.1
Flood Prone Width:	150.0
Max Depth at Bankfull:	3.0
Mean Depth at Bankfull:	1.7
W / D Ratio:	16.6
Entrenchment Ratio:	5.2
Bank Height Ratio:	1.0

Stream Type	C/E
-------------	-----

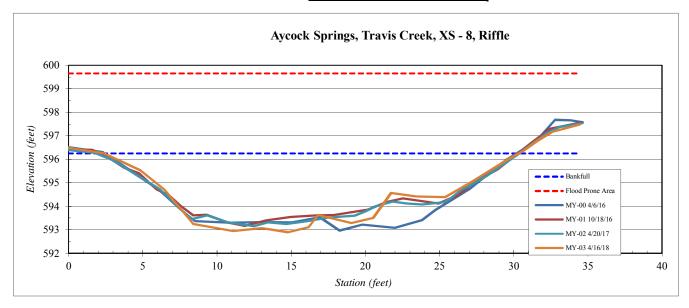

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 7, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Elevation
596.3
596.0
595.4
595.2
594.8
594.4
594.0
593.7
593.3
593.2
593.2
593.1
592.9
593.0
592.9
592.6
592.8
592.9
593.4
593.5
593.9
594.3
595.0
595.7
595.7

SUMMARY DATA	
Bankfull Elevation:	595.4
Bankfull Cross-Sectional Area:	44.9
Bankfull Width:	25.1
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.0
Mean Depth at Bankfull:	1.8
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Stream Type	C/E
-------------	-----

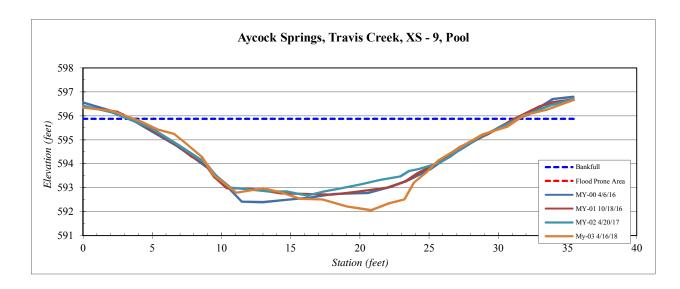
Note: Sediment Deposition in pool appears natural and is not expected to lead to instability.


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 8, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	596.49
2.4	596.25
4.8	595.54
6.5	594.70
8.4	593.25
11.1	592.95
13.0	593.07
14.8	592.90
16.2	593.11
16.8	593.62
19.1	593.29
20.5	593.51
21.7	594.56
23.4	594.42
25.4	594.39
27.2	595.06
29.5	595.96
30.7	596.37
31.6	596.78
32.6	597.17
34.5	597.5

CHMMADVDATA	
SUMMARY DATA	
Bankfull Elevation:	596.3
Bankfull Cross-Sectional Area:	58.3
Bankfull Width:	28.0
Flood Prone Area Elevation:	599.7
Flood Prone Width:	150.0
Max Depth at Bankfull:	3.4
Mean Depth at Bankfull:	2.1
W / D Ratio:	13.4
Entrenchment Ratio:	5.4
Bank Height Ratio:	1.0

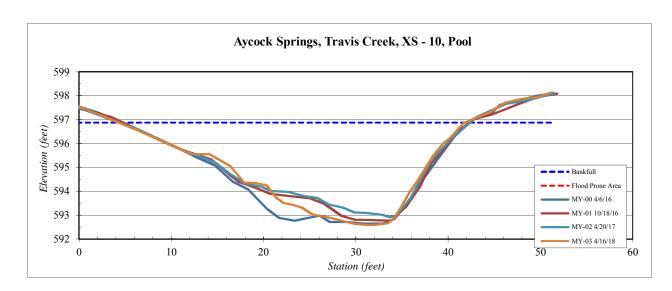
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 9, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	596.3
2.0	596.2
4.1	595.8
5.4	595.4
6.6	595.3
7.4	594.9
8.6	594.3
9.4	593.5
11.1	592.8
13.1	593.0
14.3	592.8
15.7	592.5
17.3	592.5
19.1	592.2
20.8	592.1
22.1	592.4
23.2	592.5
23.9	593.2
24.8	593.7
25.6	594.1
27.2	594.7
28.9	595.2
30.6	595.5
31.8	596.0
33.5	596.3
35.4	596.7

SUMMARY DATA	
Bankfull Elevation:	595.9
Bankfull Cross-Sectional Area:	60.8
Bankfull Width:	27.8
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.8
Mean Depth at Bankfull:	2.2
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.05

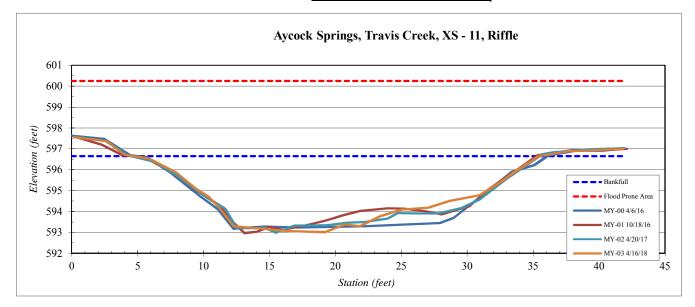
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 10, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
-0.2	597.6
6.5	596.5
9.9	595.9
12.2	595.6
14.1	595.6
16.4	595.1
17.9	594.4
19.1	594.4
20.4	594.2
21.4	593.7
22.1	593.5
23.3	593.4
24.1	593.3
25.3	593.0
26.7	592.9
28.2	592.8
29.7	592.6
31.0	592.6
32.2	592.6
33.5	592.7
34.2	592.9
34.8	593.3
35.8	593.9
36.7	594.5
38.4	595.5
39.4	596.0
40.2	596.2
41.6	596.8
43.2	597.1
44.5	597.3
46.2	597.7
48.0	597.9
49.6	597.9
51.3	598.1

SUMMARY DATA	
Bankfull Elevation:	596.9
Bankfull Cross-Sectional Area:	87.5
Bankfull Width:	37.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	4.3
Mean Depth at Bankfull:	2.3
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

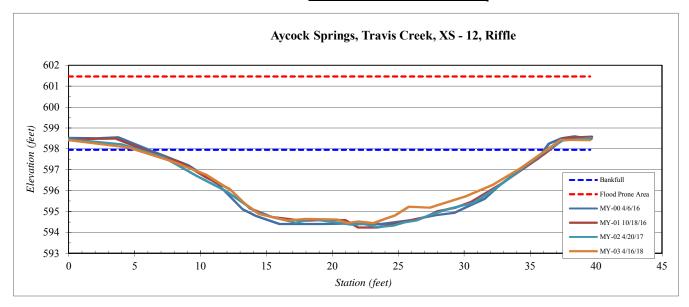
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 11, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.2	597.55
2.7	597.37
4.0	596.73
5.9	596.52
7.9	595.87
9.4	595.10
10.5	594.67
11.2	594.17
12.3	593.30
14.3	593.19
16.3	593.06
19.2	593.01
20.7	593.39
21.9	593.30
23.4	593.77
25.0	594.10
27.0	594.19
28.6	594.50
31.0	594.79
32.5	595.39
33.8	596.0
35.5	596.7
37.6	596.9
41.8	597.0

SUMMARY DATA	
Bankfull Elevation:	596.7
Bankfull Cross-Sectional Area:	69.6
Bankfull Width:	30.7
Flood Prone Area Elevation:	600.3
Flood Prone Width:	150.0
Max Depth at Bankfull:	3.6
Mean Depth at Bankfull:	2.3
W / D Ratio:	13.5
Entrenchment Ratio:	4.9
Bank Height Ratio:	1.00

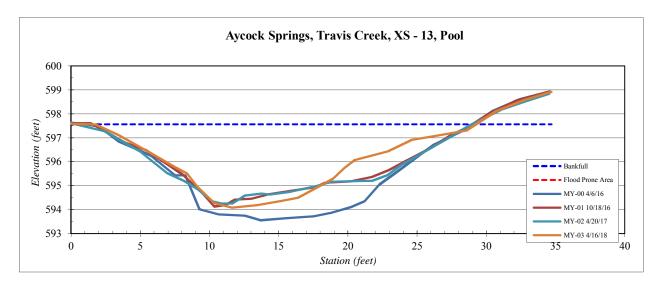
Stream Type C/E	- 7 -
-----------------	-------


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 12, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	598.42
4.5	598.06
7.9	597.38
10.5	596.75
12.3	596.02
13.4	595.39
14.4	594.87
16.6	594.58
18.0	594.64
20.3	594.63
21.1	594.46
22.0	594.53
23.1	594.44
24.0	594.65
24.8	594.82
25.8	595.23
27.4	595.19
28.4	595.40
30.1	595.72
32.1	596.27
34.3	597.1
37.3	598.4
39.5	598.4

SUMMARY DATA	
Bankfull Elevation:	598.0
Bankfull Cross-Sectional Area:	67.9
Bankfull Width:	31.3
Flood Prone Area Elevation:	601.5
Flood Prone Width:	150.0
Max Depth at Bankfull:	3.5
Mean Depth at Bankfull:	2.2
W / D Ratio:	14.4
Entrenchment Ratio:	4.8
Bank Height Ratio:	1.03

Stream Type C/E

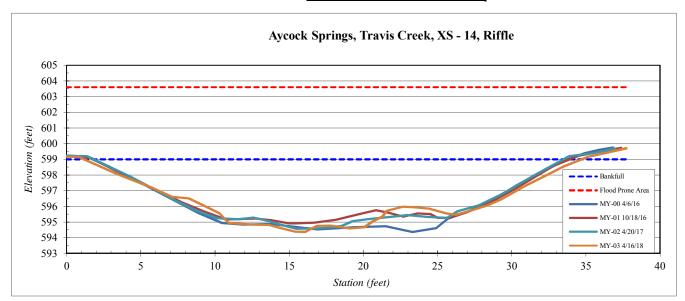

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 13, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	597.6
1.8	597.6
3.5	597.1
6.1	596.3
7.5	595.8
8.4	595.5
9.1	595.0
10.4	594.3
11.6	594.1
13.5	594.2
15.2	594.4
16.4	594.5
17.9	595.0
18.9	595.3
19.8	595.7
20.5	596.1
22.9	596.4
24.6	596.9
26.6	597.1
28.5	597.3
30.0	597.9
30.7	598.1
32.7	598.6
34.7	598.9
1	

SUMMARY DATA	
Bankfull Elevation:	597.6
Bankfull Cross-Sectional Area:	48.2
Bankfull Width:	27.8
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.5
Mean Depth at Bankfull:	1.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Stream Type C/E

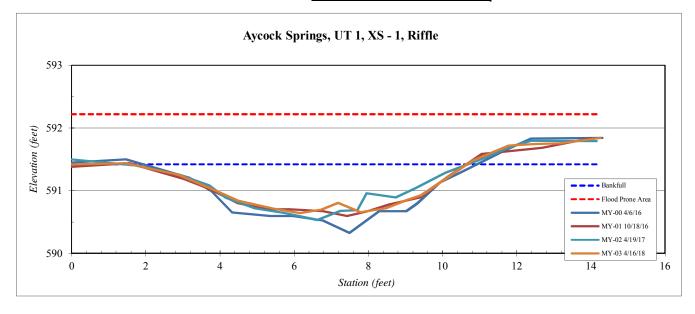
Note: Sediment Deposition in pool appears natural and is not expected to lead to instability.


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 14, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
-0.4	599.16
0.8	599.15
3.4	598.09
5.8	597.18
7.1	596.61
8.2	596.51
9.3	595.99
10.3	595.56
10.9	594.93
12.6	594.82
13.7	594.80
14.5	594.59
15.4	594.37
16.1	594.37
16.9	594.74
17.8	594.77
19.1	594.58
20.1	594.67
20.6	595.02
21.3	595.36
21.6	595.7
22.7	596.0
23.5	595.9
24.4	595.8
25.6	595.5
26.3	595.5
27.3	595.7
28.4	596.1
29.3	596.4
30.9	597.3
32.0	597.8
33.5	598.6
35.2	599.2
37.7	599.7

SUMMARY DATA	
Bankfull Elevation:	599.0
Bankfull Cross-Sectional Area:	94.6
Bankfull Width:	33.6
Flood Prone Area Elevation:	603.6
Flood Prone Width:	150.0
Max Depth at Bankfull:	4.6
Mean Depth at Bankfull:	2.8
W / D Ratio:	11.9
Entrenchment Ratio:	4.5
Bank Height Ratio:	1.0

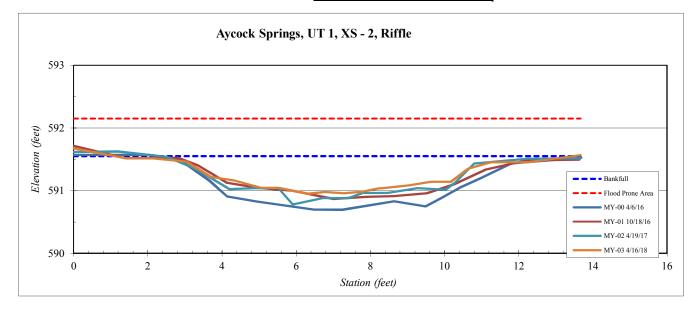
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 1, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	591.42
1.4	591.44
2.9	591.25
3.9	591.00
4.5	590.84
5.4	590.71
6.2	590.64
6.7	590.70
7.2	590.80
7.8	590.66
8.5	590.72
9.0	590.85
9.4	590.93
10.0	591.15
10.8	591.48
11.8	591.72
12.5	591.75
13.2	591.75
14.3	591.84
	1

SUMMARY DATA	
Bankfull Elevation:	591.4
Bankfull Cross-Sectional Area:	4.4
Bankfull Width:	9.1
Flood Prone Area Elevation:	592.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.5
W / D Ratio:	18.8
Entrenchment Ratio:	9.9
Bank Height Ratio:	1.0

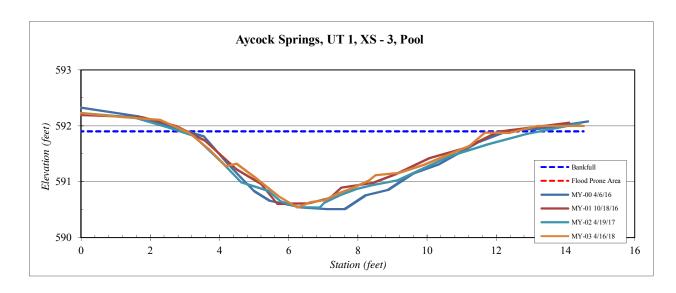
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 2, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	591.68
1.4	591.51
2.1	591.51
3.0	591.47
3.7	591.22
4.3	591.16
5.1	591.04
5.5	591.04
6.3	590.95
6.8	590.98
7.3	590.96
7.8	590.98
8.2	591.03
8.4	591.05
9.1	591.08
9.6	591.14
10.2	591.14
10.6	591.35
11.3	591.46
12.3	591.45
13.7	591.6

SUMMARY DATA	
Bankfull Elevation:	591.6
Bankfull Cross-Sectional Area:	3.7
Bankfull Width:	10.2
Flood Prone Area Elevation:	592.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	28.1
Entrenchment Ratio:	8.8
Bank Height Ratio:	<1

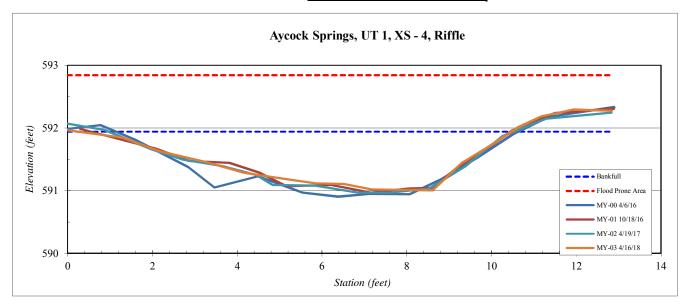
Stream Type C/E	
-----------------	--


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 3, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
-0.3	592.2
1.2	592.2
2.3	592.1
3.1	591.9
3.7	591.6
4.2	591.3
4.5	591.3
5.0	591.1
5.7	590.7
6.2	590.5
6.6	590.6
7.0	590.7
7.4	590.8
7.8	590.9
8.3	591.0
8.5	591.1
9.2	591.2
9.9	591.3
10.5	591.5
11.2	591.6
11.7	591.9
12.4	591.9
13.2	592.0
14.5	592.00

SUMMARY DATA	
Bankfull Elevation:	591.9
Bankfull Cross-Sectional Area:	6.4
Bankfull Width:	9.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

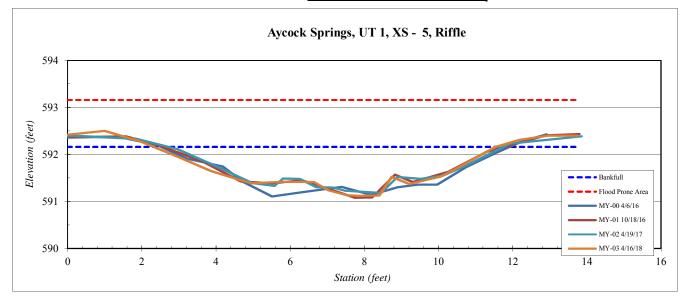
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 4, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	591.97
1.3	591.85
2.2	591.63
3.3	591.46
4.2	591.29
4.9	591.21
5.8	591.11
6.5	591.11
7.2	591.02
7.7	591.02
8.6	591.01
9.3	591.44
9.9	591.68
10.6	592.01
11.2	592.18
11.9	592.29
12.8	592.27

SUMMARY DATA	
Bankfull Elevation:	591.9
Bankfull Cross-Sectional Area:	5.7
Bankfull Width:	10.2
Flood Prone Area Elevation:	592.8
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.6
W / D Ratio:	18.3
Entrenchment Ratio:	8.8
Bank Height Ratio:	1.0

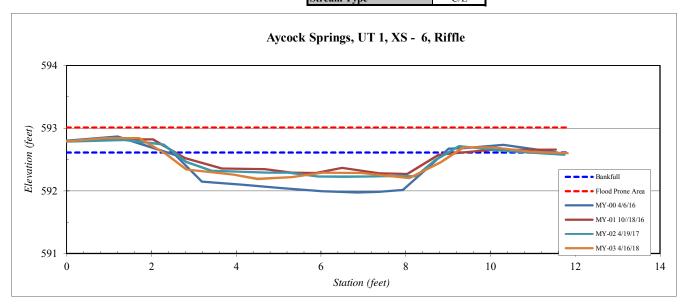
Stream Type C/E	- 7 -
-----------------	-------


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 5, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	592.42
1.0	592.50
2.0	592.27
3.0	591.95
3.9	591.65
4.6	591.46
5.0	591.39
5.8	591.42
6.6	591.41
7.0	591.24
7.5	591.13
7.9	591.12
8.4	591.13
8.7	591.52
9.2	591.37
10.1	591.53
10.6	591.74
11.5	592.15
12.2	592.31
13.0	592.40
13.7	592.4

SUMMARY DATA	
Bankfull Elevation:	592.2
Bankfull Cross-Sectional Area:	5.8
Bankfull Width:	9.2
Flood Prone Area Elevation:	593.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.6
W / D Ratio:	14.6
Entrenchment Ratio:	9.8
Bank Height Ratio:	1.0

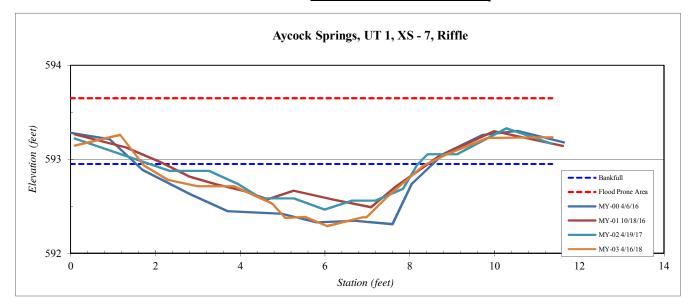
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 6, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	592.79
0.9	592.84
1.7	592.84
2.3	592.59
2.8	592.34
3.9	592.26
4.5	592.19
5.3	592.22
6.0	592.29
7.0	592.28
8.1	592.20
8.8	592.46
9.4	592.69
10.1	592.69
11.0	592.62
11.8	592.60
I	1

SUMMARY DATA	
Bankfull Elevation:	592.6
Bankfull Cross-Sectional Area:	2.2
Bankfull Width:	6.9
Flood Prone Area Elevation:	593.0
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.3
W / D Ratio:	21.6
Entrenchment Ratio:	13.0
Bank Height Ratio:	1.0

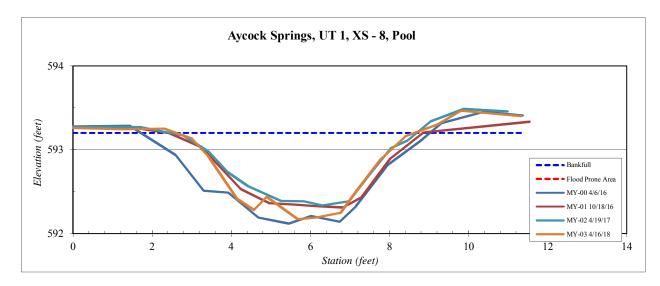
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 7, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.1	593.15
1.2	593.26
1.7	592.93
2.3	592.78
3.0	592.71
3.9	592.71
4.8	592.53
5.1	592.38
5.5	592.39
6.1	592.29
6.9	592.38
7.0	592.38
7.5	592.60
8.3	592.93
8.9	593.05
9.8	593.23
11.4	593.23
•	

SUMMARY DATA	
Bankfull Elevation:	593.0
Bankfull Cross-Sectional Area:	2.4
Bankfull Width:	6.7
Flood Prone Area Elevation:	593.7
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	18.7
Entrenchment Ratio:	13.4
Bank Height Ratio:	1.0

Stream Type C/E

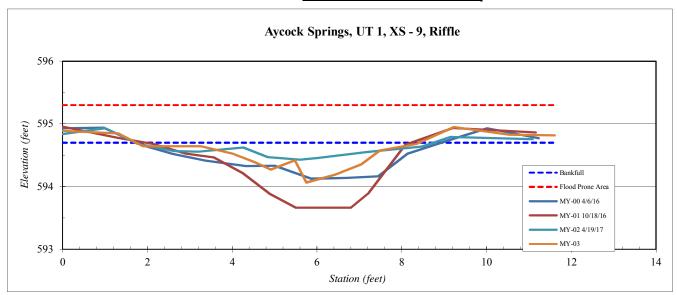

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 8, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	593.3
1.3	593.2
2.3	593.3
3.0	593.1
3.4	592.9
4.1	592.4
4.6	592.3
4.9	592.4
5.7	592.2
6.1	592.2
6.8	592.2
7.2	592.5
7.8	592.9
8.4	593.2
9.2	593.3
9.8	593.5
11.3	593.4

SUMMARY DATA	
Bankfull Elevation:	593.2
Bankfull Cross-Sectional Area:	3.6
Bankfull Width:	6.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Stream Type C/E	
-----------------	--

Note: Cross Sections 8 and 9 (UT 1) are located in the vicinity of a bed material repair. Additional bed material was added by hand in this reach.

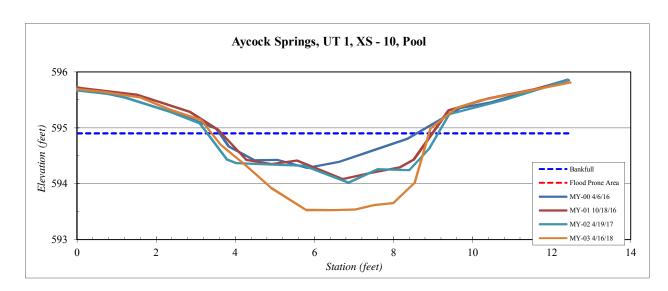

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 9, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	594.89
1.3	594.85
1.9	594.64
3.3	594.64
4.0	594.53
4.5	594.39
4.9	594.27
5.5	594.42
5.8	594.06
6.4	594.19
7.1	594.36
7.5	594.58
8.3	594.68
9.2	594.95
10.5	594.83
11.6	594.82

SUMMARY DATA	
Bankfull Elevation:	594.7
Bankfull Cross-Sectional Area:	1.6
Bankfull Width:	6.7
Flood Prone Area Elevation:	595.3
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.2
W / D Ratio:	28.1
Entrenchment Ratio:	13.4
Bank Height Ratio:	1.0

Stream Type C/E

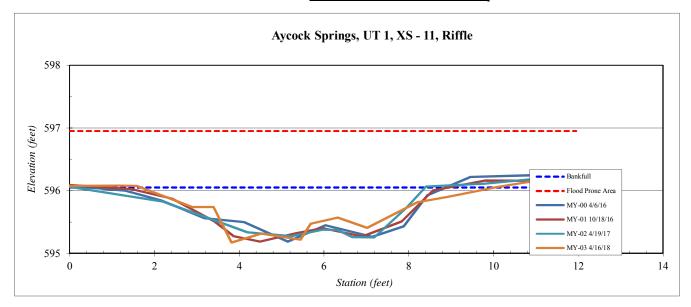
Note: Cross Sections 8 and 9 (UT 1) are located in the vicinity of a bed material repair. Additional bed material was added by hand in this reach.


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 10, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
-0.2	595.7
0.7	595.6
1.6	595.5
2.4	595.3
3.1	595.1
3.6	594.7
4.3	594.3
4.9	593.9
5.8	593.5
6.5	593.5
7.0	593.5
7.5	593.6
8.0	593.7
8.5	594.0
8.9	595.0
9.6	595.4
10.2	595.5
11.1	595.6
12.5	595.8

SUMMARY DATA	
Bankfull Elevation:	594.9
Bankfull Cross-Sectional Area:	5.5
Bankfull Width:	5.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	1.0
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.14

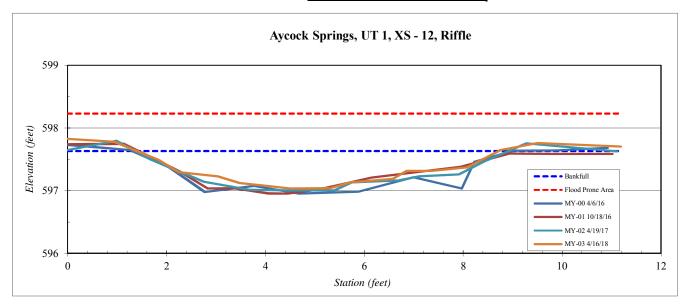
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 11, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Elevation
596.08
596.08
596.08
595.82
595.74
595.74
595.17
595.32
595.22
595.47
595.57
595.41
595.81
595.90
596.06
596.17
596.17

SUMMARY DATA	
Bankfull Elevation:	596.1
Bankfull Cross-Sectional Area:	3.5
Bankfull Width:	8.4
Flood Prone Area Elevation:	597.0
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.4
W / D Ratio:	20.2
Entrenchment Ratio:	10.7
Bank Height Ratio:	1.0

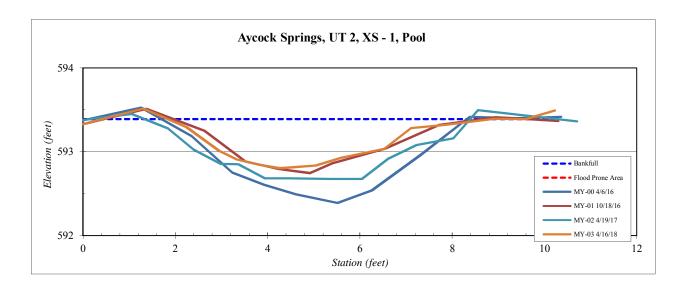
Stream Type C/E	- 7 -
-----------------	-------


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 12, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	597.82
0.9	597.78
1.8	597.49
2.2	597.29
3.0	597.23
3.5	597.12
4.1	597.07
4.5	597.04
5.3	597.04
5.7	597.13
6.6	597.19
6.9	597.32
7.4	597.31
8.1	597.37
8.8	597.65
9.5	597.76
11.2	597.70

SUMMARY DATA	
Bankfull Elevation:	597.6
Bankfull Cross-Sectional Area:	2.8
Bankfull Width:	7.3
Flood Prone Area Elevation:	598.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	19.0
Entrenchment Ratio:	12.3
Bank Height Ratio:	1.0

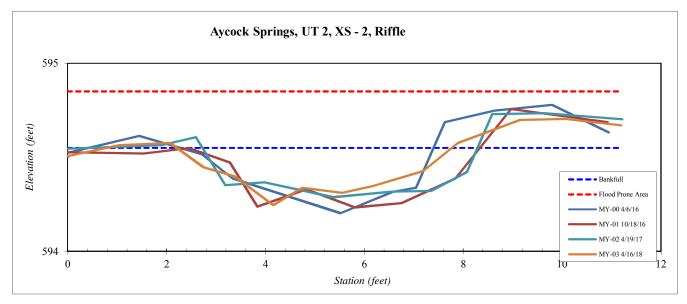
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 1, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
-0.2	593.3
1.3	593.5
2.2	593.3
3.0	593.0
3.3	592.9
3.8	592.8
4.3	592.8
5.0	592.8
5.6	592.9
6.5	593.0
7.1	593.3
7.9	593.3
8.9	593.4
9.6	593.4
10.2	593.5

SUMMARY DATA	
Bankfull Elevation:	593.4
Bankfull Cross-Sectional Area:	2.2
Bankfull Width:	7.3
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.3
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

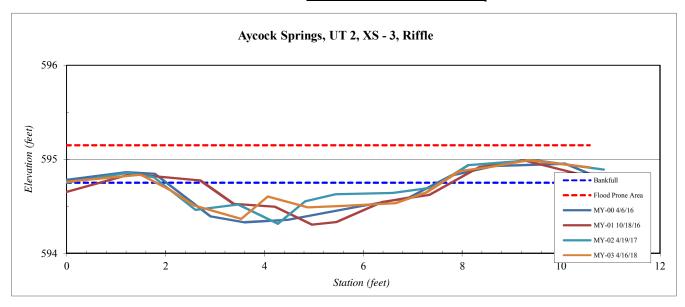
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 2, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	594.01
1.0	594.06
2.1	594.08
2.7	593.95
3.4	593.90
4.2	593.75
4.7	593.84
5.5	593.81
6.2	593.85
7.2	593.93
7.9	594.08
9.2	594.20
10.1	594.20
11.2	594.17
-	
	1
	1
	1
	1

SUMMARY DATA	
Bankfull Elevation:	594.1
Bankfull Cross-Sectional Area:	1.0
Bankfull Width:	5.6
Flood Prone Area Elevation:	594.4
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.3
Mean Depth at Bankfull:	0.2
W / D Ratio:	31.4
Entrenchment Ratio:	16.1
Bank Height Ratio:	1.0

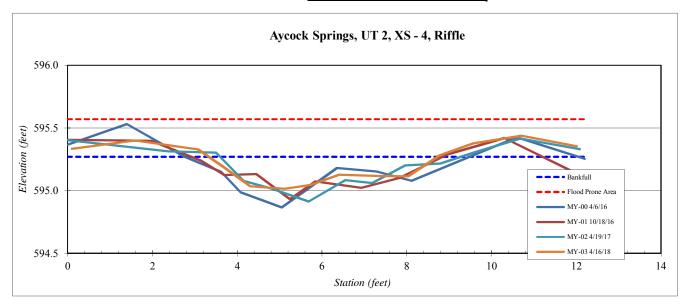
Stream Type	C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 3, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	594.76
1.5	594.84
2.1	594.67
2.6	594.51
3.5	594.37
4.1	594.60
4.9	594.49
5.5	594.50
6.6	594.53
7.3	594.65
7.9	594.87
8.6	594.92
9.3	594.99
10.6	594.91

SUMMARY DATA	
Bankfull Elevation:	594.8
Bankfull Cross-Sectional Area:	1.2
Bankfull Width:	5.8
Flood Prone Area Elevation:	595.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.2
W / D Ratio:	28.0
Entrenchment Ratio:	15.5
Bank Height Ratio:	1.0

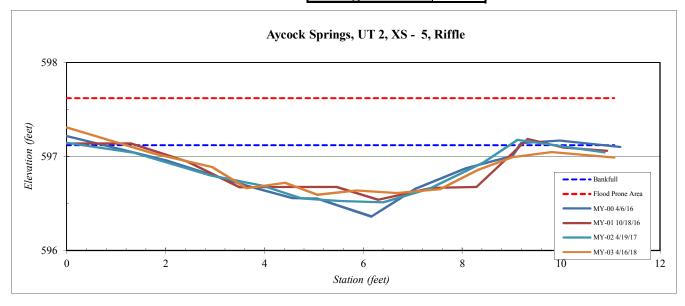
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 4, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.1	595.33
1.6	595.40
3.1	595.33
3.7	595.18
4.3	595.04
5.1	595.01
5.7	595.05
6.4	595.13
7.3	595.12
8.0	595.11
8.8	595.28
9.6	595.38
10.7	595.44
12.0	595.35

SUMMARY DATA	
Bankfull Elevation:	595.3
Bankfull Cross-Sectional Area:	0.9
Bankfull Width:	5.4
Flood Prone Area Elevation:	595.6
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.3
Mean Depth at Bankfull:	0.2
W / D Ratio:	32.4
Entrenchment Ratio:	16.7
Bank Height Ratio:	1.0

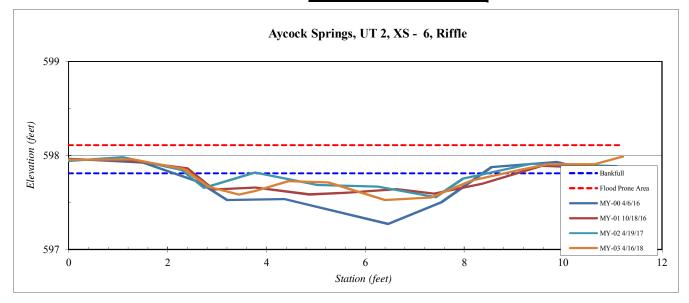
Stream Type C/E	- 7 -
-----------------	-------


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 5, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	597.31
1.8	597.03
2.9	596.89
3.6	596.66
4.4	596.72
5.1	596.59
5.9	596.64
6.7	596.61
7.6	596.65
8.3	596.86
9.0	596.99
9.8	597.05
11.1	596.99
	270.77

SUMMARY DATA	_
Bankfull Elevation:	597.1
Bankfull Cross-Sectional Area:	2.9
Bankfull Width:	9.9
Flood Prone Area Elevation:	597.6
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	33.8
Entrenchment Ratio:	9.1
Bank Height Ratio:	<1

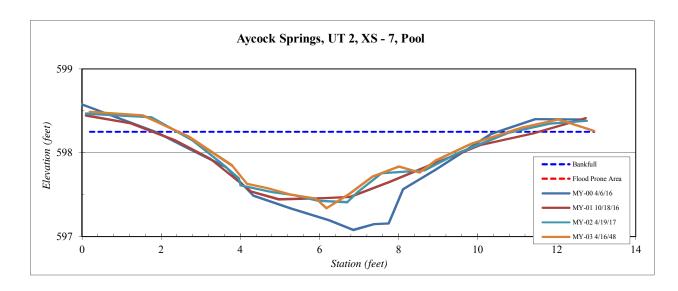
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 6, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	597.96
1.3	597.96
2.3	597.86
2.8	597.67
3.4	597.59
3.8	597.63
4.4	597.73
5.3	597.72
6.4	597.53
7.3	597.55
8.2	597.74
9.1	597.85
9.7	597.91
10.6	597.91
11.2	597.99

SUMMARY DATA	
Bankfull Elevation:	597.8
Bankfull Cross-Sectional Area:	1.0
Bankfull Width:	6.4
Flood Prone Area Elevation:	598.1
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.3
Mean Depth at Bankfull:	0.2
W / D Ratio:	41.0
Entrenchment Ratio:	14.1
Bank Height Ratio:	1.0

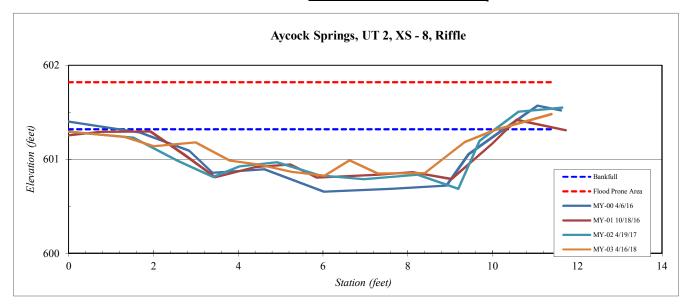
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 7, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.2	598.5
1.5	598.4
2.7	598.2
3.8	597.8
4.2	597.6
4.7	597.6
5.3	597.5
5.9	597.5
6.2	597.3
6.8	597.5
7.4	597.7
8.0	597.8
8.5	597.8
9.0	597.9
9.8	598.1
11.1	598.3
12.1	598.4
13.0	598.3

SUMMARY DATA	
Bankfull Elevation:	598.3
Bankfull Cross-Sectional Area:	3.8
Bankfull Width:	8.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

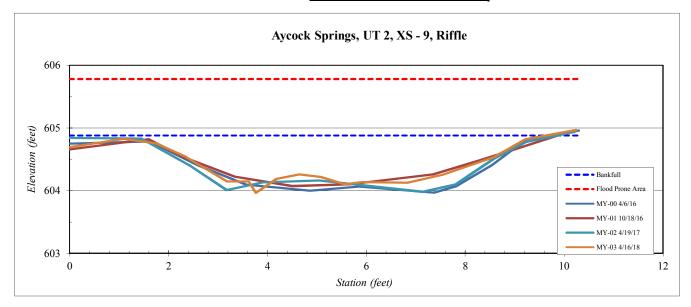
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 8, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Elevation	Station
601.30	0.0
601.24	1.3
601.14	2.0
601.18	3.0
600.99	3.8
600.95	4.5
600.87	5.3
600.83	6.0
600.99	6.6
600.85	7.3
600.85	8.4
601.18	9.3
601.31	10.0
601.48	11.4

SUMMARY DATA	
Bankfull Elevation:	601.3
Bankfull Cross-Sectional Area:	2.8
Bankfull Width:	10.1
Flood Prone Area Elevation:	601.8
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	36.4
Entrenchment Ratio:	8.9
Bank Height Ratio:	<1

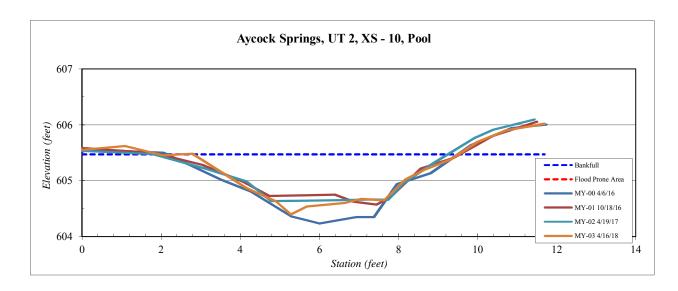
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 9, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	604.69
1.1	604.83
1.7	604.76
2.3	604.54
3.2	604.15
3.6	604.15
3.8	603.96
4.2	604.19
4.6	604.26
5.1	604.22
5.6	604.10
5.9	604.14
6.8	604.13
7.5	604.26
8.6	604.54
9.2	604.82
10.2	604.97

SUMMARY DATA	
Bankfull Elevation:	604.9
Bankfull Cross-Sectional Area:	4.4
Bankfull Width:	8.5
Flood Prone Area Elevation:	605.8
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	16.4
Entrenchment Ratio:	10.6
Bank Height Ratio:	1.0

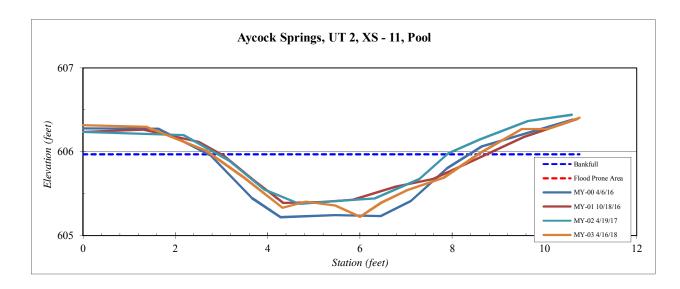
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 10, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	605.6
1.1	605.6
2.0	605.5
2.8	605.5
3.6	605.1
4.2	604.9
4.9	604.6
5.3	604.4
5.7	604.5
6.6	604.6
7.1	604.7
7.6	604.6
8.2	605.0
8.7	605.2
9.3	605.4
10.0	605.7
10.7	605.9
11.7	606.0

SUMMARY DATA	
Bankfull Elevation:	605.5
Bankfull Cross-Sectional Area:	4.0
Bankfull Width:	6.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.1
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

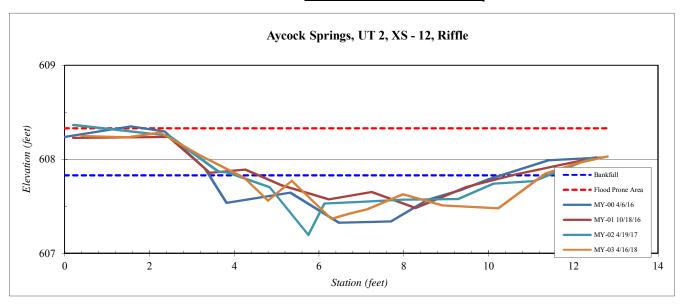
Stream Type C/E	
-----------------	--


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 11, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Elevation
606.3
606.3
606.0
605.7
605.3
605.4
605.4
605.2
605.4
605.5
605.7
606.0
606.3
606.3
606.4

SUMMARY DATA	
Bankfull Elevation:	606.0
Bankfull Cross-Sectional Area:	2.5
Bankfull Width:	5.8
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

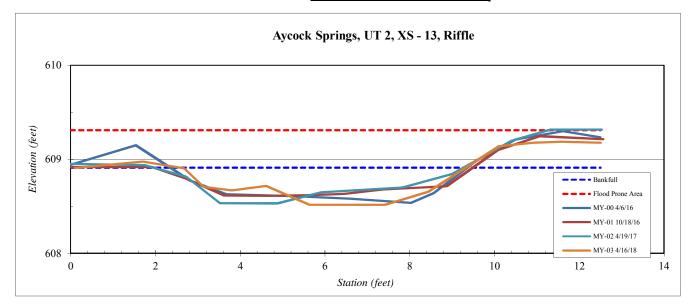
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 12, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.4	608.25
1.5	608.24
2.3	608.28
3.2	608.04
4.2	607.80
4.8	607.56
5.4	607.77
6.3	607.37
6.7	607.42
7.1	607.47
8.0	607.63
8.9	607.51
10.2	607.48
11.4	607.85
12.1	607.96
12.8	608.03

SUMMARY DATA	
Bankfull Elevation:	607.8
Bankfull Cross-Sectional Area:	1.9
Bankfull Width:	7.2
Flood Prone Area Elevation:	608.3
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	27.3
Entrenchment Ratio:	12.5
Bank Height Ratio:	1.0

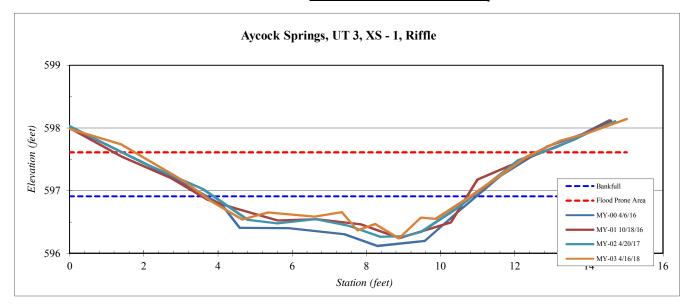
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 13, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Elevation
608.91
608.97
608.90
608.71
608.67
608.72
608.52
608.52
608.52
608.65
608.84
609.14
609.18
609.19
609.18

SUMMARY DATA	
Bankfull Elevation:	608.9
Bankfull Cross-Sectional Area:	1.8
Bankfull Width:	6.7
Flood Prone Area Elevation:	609.3
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.3
W / D Ratio:	24.9
Entrenchment Ratio:	13.4
Bank Height Ratio:	1.0

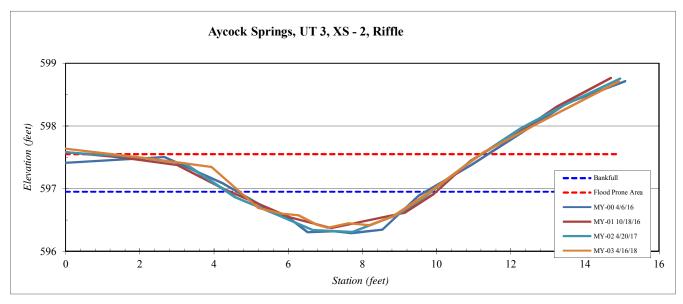
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 3, XS - 1, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	597.98
1.4	597.74
3.1	597.15
3.8	596.83
4.7	596.54
5.4	596.65
6.6	596.58
7.3	596.66
7.8	596.37
8.2	596.47
8.9	596.24
9.5	596.57
9.9	596.55
10.8	596.90
12.3	597.55
13.2	597.79
13.9	597.90
15.0	598.14

B.	
SUMMARY DATA	
Bankfull Elevation:	596.9
Bankfull Cross-Sectional Area:	2.4
Bankfull Width:	7.2
Flood Prone Area Elevation:	597.6
Flood Prone Width:	11.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.3
W / D Ratio:	21.6
Entrenchment Ratio:	1.5
Bank Height Ratio:	1.0

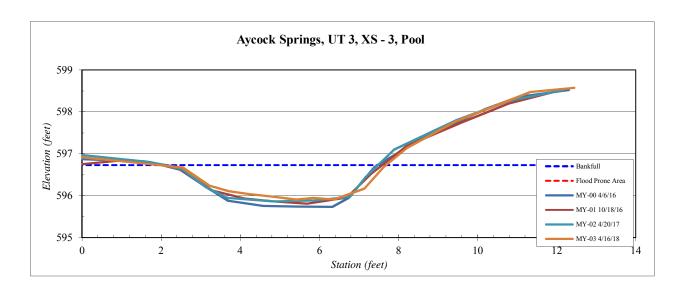
Stream Type C/E	
-----------------	--


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 3, XS - 2, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
-0.2	597.65
2.1	597.49
3.9	597.34
5.2	596.69
5.8	596.60
6.3	596.57
6.8	596.43
7.1	596.38
7.6	596.45
8.2	596.42
8.8	596.56
9.7	596.90
11.3	597.58
12.8	598.05
14.9	598.71

SUMMARY DATA	•
Bankfull Elevation:	597.0
Bankfull Cross-Sectional Area:	1.9
Bankfull Width:	5.1
Flood Prone Area Elevation:	597.6
Flood Prone Width:	8.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	13.7
Entrenchment Ratio:	1.6
Bank Height Ratio:	1.0

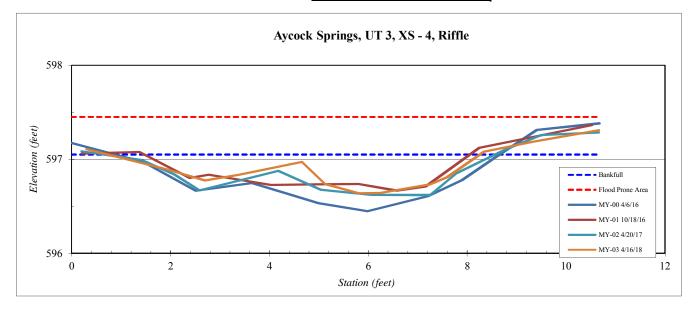
Stream Type	C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 3, XS - 3, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
-0.1	596.9
0.9	596.8
2.5	596.7
3.2	596.2
3.7	596.1
4.2	596.0
4.9	596.0
5.4	595.9
5.8	596.0
6.4	595.9
7.1	596.2
7.6	596.7
8.2	597.1
9.4	597.8
11.3	598.5
12.4	598.6

SUMMARY DATA	
Bankfull Elevation:	596.7
Bankfull Cross-Sectional Area:	3.2
Bankfull Width:	5.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

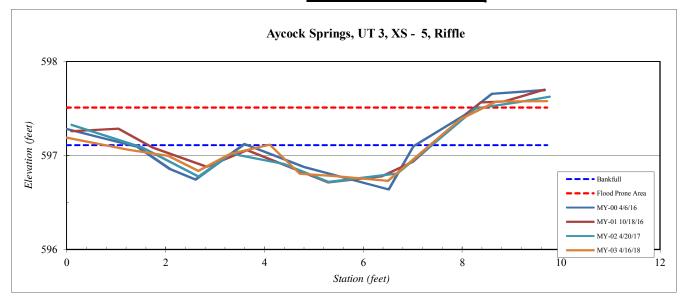
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 3, XS - 4, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.3	597.11
1.9	596.89
2.7	596.78
3.4	596.84
4.7	596.97
5.1	596.74
5.8	596.64
6.2	596.64
7.3	596.73
7.6	596.81
8.3	597.08
9.4	597.19
10.7	597.31

SUMMARY DATA	
Bankfull Elevation:	597.1
Bankfull Cross-Sectional Area:	1.7
Bankfull Width:	7.5
Flood Prone Area Elevation:	597.5
Flood Prone Width:	20.0
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.2
W / D Ratio:	33.1
Entrenchment Ratio:	2.7
Bank Height Ratio:	1.0

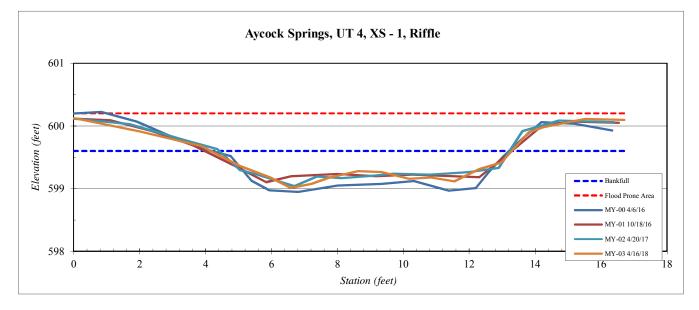
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 3, XS - 5, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
-0.2	597.21
1.3	597.06
2.1	597.00
2.7	596.84
3.3	597.02
4.1	597.11
4.7	596.81
5.4	596.78
6.5	596.73
7.0	596.98
8.0	597.39
8.7	597.58
9.7	597.58

SUMMARY DATA	
Bankfull Elevation:	597.1
Bankfull Cross-Sectional Area:	1.2
Bankfull Width:	6.5
Flood Prone Area Elevation:	597.5
Flood Prone Width:	20.0
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.2
W / D Ratio:	35.2
Entrenchment Ratio:	3.1
Bank Height Ratio:	1.0

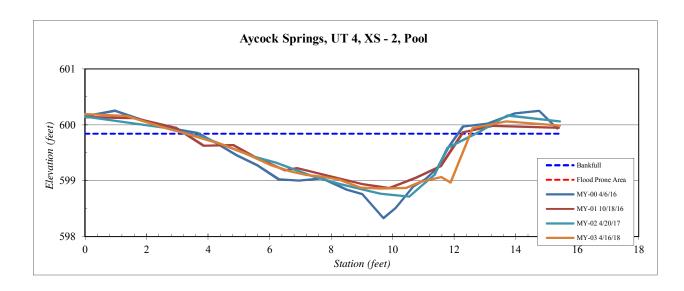
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 1, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
-0.1	600.14
2.0	599.91
3.9	599.68
5.0	599.36
6.0	599.18
6.6	599.01
7.2	599.08
7.7	599.17
8.6	599.28
9.3	599.26
10.2	599.16
10.9	599.18
11.5	599.11
12.3	599.31
13.0	599.42
13.8	599.90
14.2	599.98
15.5	600.11
16.7	600.10

SUMMARY DATA	
Bankfull Elevation:	599.6
Bankfull Cross-Sectional Area:	3.3
Bankfull Width:	9.1
Flood Prone Area Elevation:	600.2
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	25.1
Entrenchment Ratio:	5.5
Bank Height Ratio:	1.0

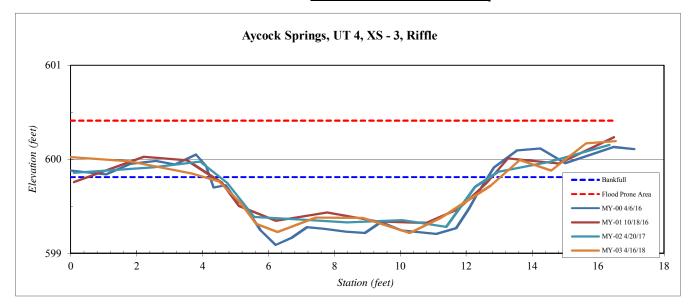
Stream Type	C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 2, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	600.2
1.4	600.2
2.5	600.0
3.4	599.8
4.4	599.7
5.2	599.5
6.0	599.3
6.7	599.2
7.2 7.7	599.1
7.7	599.1
8.3	599.0
8.9	598.9
9.6	598.9
10.4	598.9
10.9	599.0
11.6	599.1
11.9	599.0
12.6	599.9
13.7	600.1
15.4	600.0

SUMMARY DATA	
Bankfull Elevation:	599.8
Bankfull Cross-Sectional Area:	5.8
Bankfull Width:	9.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

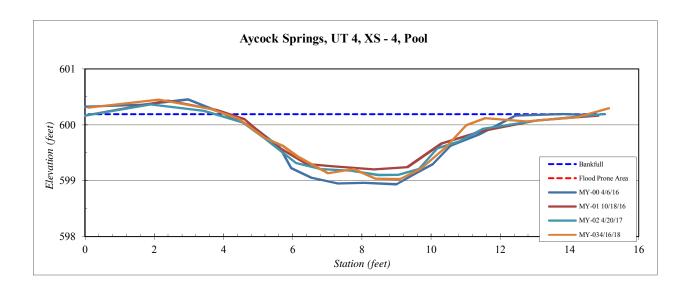
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 3, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	600.02
1.8	599.98
3.7	599.85
4.5	599.76
5.2	599.53
5.6	599.31
6.3	599.23
7.4	599.38
8.9	599.38
10.3	599.22
11.2	599.38
12.0	599.55
12.7	599.72
13.6	599.99
14.6	599.88
15.6	600.17
16.5	600.19
I	

SUMMARY DATA	
Bankfull Elevation:	599.8
Bankfull Cross-Sectional Area:	3.5
Bankfull Width:	9.0
Flood Prone Area Elevation:	600.4
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	23.1
Entrenchment Ratio:	5.6
Bank Height Ratio:	1.0

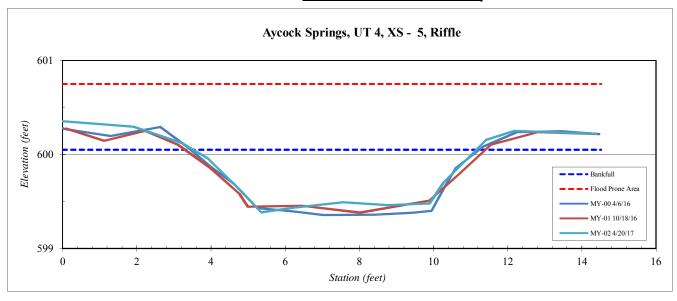
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 4, Pool
Feature	Pool
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.1	600.3
2.1	600.4
3.6	600.3
4.4	600.1
5.2	599.8
5.7	599.6
6.2	599.4
7.0	599.1
7.8	599.2
8.4	599.0
9.1	599.0
9.7	599.2
10.4	599.6
11.0	600.0
11.6	600.1
12.8	600.1
14.2	600.1
15.1	600.3

SUMMARY DATA	
Bankfull Elevation:	600.2
Bankfull Cross-Sectional Area:	5.6
Bankfull Width:	10.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

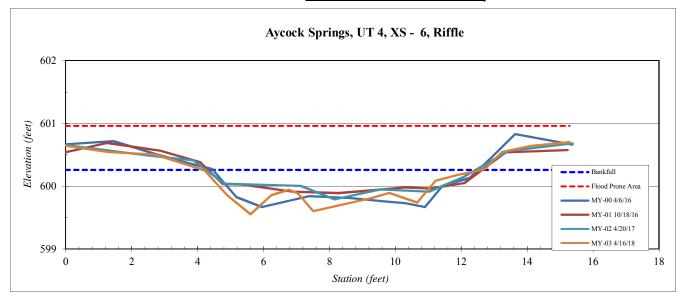
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 5, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
-0.2	600.34
1.7	600.34
2.8	600.26
3.7	599.89
4.4	599.58
5.0	599.45
5.9	599.41
6.9	599.54
7.7	599.50
8.4	599.35
9.2	599.48
9.8	599.49
10.2	599.65
11.0	600.02
12.1	600.24
13.1	600.24
14.5	600.21

SUMMARY DATA	
Bankfull Elevation:	600.1
Bankfull Cross-Sectional Area:	3.8
Bankfull Width:	7.9
Flood Prone Area Elevation:	600.8
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.5
W / D Ratio:	16.4
Entrenchment Ratio:	6.3
Bank Height Ratio:	1.0

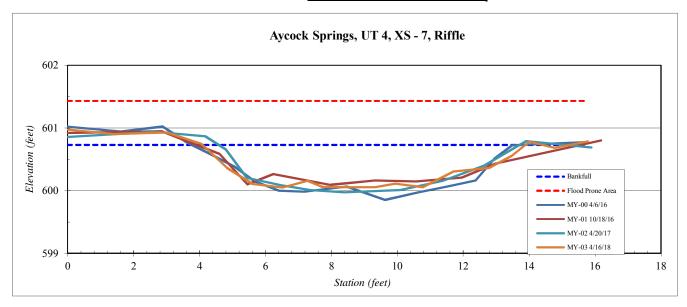
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 6, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
-0.1	600.65
1.3	600.54
2.7	600.50
4.2	600.26
4.9	599.86
5.6	599.56
6.2	599.86
6.8	599.95
7.0	599.89
7.5	599.60
8.2	599.69
9.3	599.81
9.8	599.89
10.7	599.74
11.2	600.09
11.9	600.19
12.7	600.27
13.2	600.55
14.1	600.64
15.3	600.70

SUMMARY DATA	
Bankfull Elevation:	600.3
Bankfull Cross-Sectional Area:	3.3
Bankfull Width:	8.4
Flood Prone Area Elevation:	601.0
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	21.4
Entrenchment Ratio:	6.0
Bank Height Ratio:	1.0

Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 7, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	600.97
1.4	600.90
3.0	600.93
4.1	600.74
4.8	600.36
5.6	600.10
6.5	600.05
7.3	600.16
7.7	600.06
8.4	600.06
9.3	600.05
9.9	600.11
10.8	600.06
11.7	600.30
12.8	600.36
13.5	600.55
14.0	600.78
14.8	600.69
15.8	600.78

SUMMARY DATA	
Bankfull Elevation:	600.7
Bankfull Cross-Sectional Area:	5.0
Bankfull Width:	9.8
Flood Prone Area Elevation:	601.4
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.5
W / D Ratio:	19.2
Entrenchment Ratio:	5.1
Bank Height Ratio:	1.0

Stream Type	C/E
-------------	-----

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 8, Riffle
Feature	Riffle
Date:	4/16/2018
Field Crew:	Perkinson, Butler

Station	Elevation
0.0	601.19
1.7	601.12
2.5	600.74
3.3	600.64
4.1	600.57
4.8	600.67
5.5	600.60
5.8	600.45
6.5	600.41
7.1	600.36
7.9	600.36
8.3	600.41
9.0	600.41
9.8	600.59
10.5	600.70
11.1	600.90
12.4	601.09
13.1	601.16
14.1	601.26

SUMMARY DATA	•
Bankfull Elevation:	601.1
Bankfull Cross-Sectional Area:	4.9
Bankfull Width:	10.6
Flood Prone Area Elevation:	601.8
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.5
W / D Ratio:	22.9
Entrenchment Ratio:	4.7
Bank Height Ratio:	1.0

Stream Type C/E

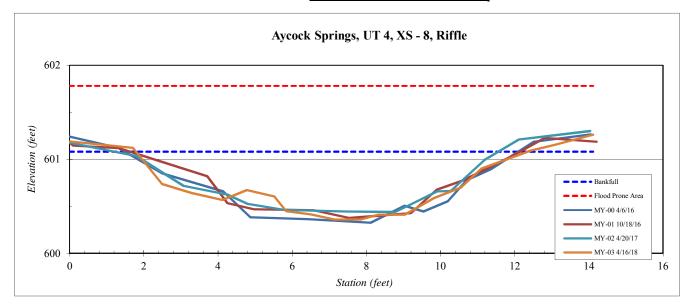


Table 11A. Baseline Morphology and Hydraulic Summary Aycock Springs UT 1

Parameter	USGS Gage Data		e-Exist	_	-	ect Refe		-	ect Refe			Design			As-bu	:14
	USUS Gage Data	(Conditio	on	Ced	larock P	ark	Cri	ipple Cr	reek		Design			AS-Du	ш
Dimension	Min Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS gage data is	3.8	9.6	6.7	8	12.1	8.1	3	6.1	4.6	7.2	8.3	7.8	6.4	9.6	8.0
Floodprone Width (ft)	unavailable for this	8	73	30	15	25	18	150	150	150	20	70	50			90
BF Cross Sectional Area (ft2)	project			4.3			8			5.9			4.3	3	6.6	3.9
BF Mean Depth (ft)		0.8	1	0.8	0.8	1	0.8	0.7	1.5	1.1	0.5	0.7	0.6	0.4	0.7	0.5
BF Max Depth (ft)		1.1	1.4	1.4	1.1	1.4	1.4	1	2.3	1.7	0.7	0.9	0.8	0.6	1.1	0.7
Width/Depth Ratio		8	15.1	10.1	8	15.1	10.1	4	4.3	4.2	12	16	14	11	19	15
Entrenchment Ratio		1.9	2.2	2.1	1.9	2.2	2.1	24.6	50	37.3	2.6	9	6.4	9	14	11.3
Bank Height Ratio		1	1.8	1	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)				===			===			===			===			===
Hydraulic radius (ft)				===			===			===			===			===
Pattern																
Channel Beltwidth (ft)			attern of		20	38	22.8	15.1	29.2	24.3	23	47	31	23	47	31
Radius of Curvature (ft)			pools d		11	27	16.5	8.9	19.4	13.2	14	31	23	14	31	23
Meander Wavelength (ft)		straigh	itening a	activties	44	116	68.4	31	74	47.8	47	94	66	47	94	66
Meander Width ratio					2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile								-	-	•		•	-		-	
Riffle length (ft)			attern of				===			===			===	9	70	16
Riffle slope (ft/ft)			pools d		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	2.77%	6.47%	4.16%	0.01%	4.33%	2.23%
Pool length (ft)		straigh	itening a	activties			===			===			===	4	23	9
Pool spacing (ft)					25	69	37.2	14	39.6	32.4	23	62	31	23	62	31
Substrate																
d50 (mm)				===			===			===			===			===
d84 (mm)				===			===			===			===			===
Additional Reach Parameters								-	-				-			
Valley Length (ft)				===			===			===			===			===
Channel Length (ft)				===			===			===			===			===
Sinuosity				1.02			1.2			1.22			1.1			1.1
Water Surface Slope (ft/ft)				1.37% -			2.58%			0.50%			1.27% -			1.89%
				3.61%									3.35%			
BF slope (ft/ft)				===			===			===			===			===
Rosgen Classification				Cg			Е			Е			E/C			E/C

Table 11B. Baseline Morphology and Hydraulic Summary Aycock Springs UT 2

Parameter	USG	S Gage	Data		e-Exist	0	U	ect Refe larock P		U	ect Refe			Design			As-built	t
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USG	S gage o		3.8	9.6	6.7	8	12.1	8.1	3	6.1	4.6	7.2	8.3	7.8	4.8	8.6	7.2
Floodprone Width (ft)		ailable f		8	73	30	15	25	18	150	150	150	20	70	50			90
BF Cross Sectional Area (ft2)	1	project				4.3			8			5.9			4.3	1	4.2	2.3
BF Mean Depth (ft)]			0.8	1	0.8	0.8	1	0.8	0.7	1.5	1.1	0.5	0.7	0.6	0.2	0.6	0.3
BF Max Depth (ft)				1.1	1.4	1.4	1.1	1.4	1.4	1	2.3	1.7	0.7	0.9	0.8	0.3	0.8	0.6
Width/Depth Ratio				8	15.1	10.1	8	15.1	10.1	4	4.3	4.2	12	16	14	12	32	22
Entrenchment Ratio				1.9	2.2	2.1	1.9	2.2	2.1	24.6	50	37.3	2.6	9	6.4	11	19	13
Bank Height Ratio				1	1.8	1	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)						===			===			===			===			===
Hydraulic radius (ft)						===			===			===			===			===
Pattern																		
Channel Beltwidth (ft)					attern o		20	38	22.8	15.1	29.2	24.3	23	47	31	23	47	31
Radius of Curvature (ft)					pools o		11	27	16.5	8.9	19.4	13.2	14	31	23	14	31	23
Meander Wavelength (ft)				straigh	itening a	activties	44	116	68.4	31	74	47.8	47	94	66	47	94	66
Meander Width ratio							2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile																		
Riffle length (ft)					attern o				===			===			===	9	23	14
Riffle slope (ft/ft)					pools o		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	2.77%	6.47%	4.16%	0.00%	5.24%	2.88%
Pool length (ft)				straigh	itening a	activties			===			===			===	5	17	10
Pool spacing (ft)							25	69	37.2	14	39.6	32.4	23	62	31	23	62	31
Substrate																		
d50 (mm)						===			===			===			===			===
d84 (mm)						===			===			===			===			===
Additional Reach Parameters	1																	
Valley Length (ft)						===			===			===			===			===
Channel Length (ft)						===			===			===			===			===
Sinuosity						1.02			1.2			1.22			1.1			1.1
Water Surface Slope (ft/ft)						1.37% -			2.58%			0.50%			1.27% -			3.01%
						3.61%									3.35%			
BF slope (ft/ft)						===			===			===			===	ĺ		===
Rosgen Classification						Cg			Е			Е			E/C			E/C
Note: UT 2 is characterized by a sp		aan wi	h a va	ry ema	water		he chai	and was	constr	icted w	th a cm	aller Ra	nktull (rose Se	ctional	area to	account	tor tho

Note: UT 2 is characterized by a spring/seep, with a very small watershed. The channel was constructed with a smaller Bankfull Cross Sectional area to account for the smaller stormwater pulses and controlled discharge. In addition, the lower reaches of the channel are low slope wetlands that elevate the width-to-depth ratio in post construction measurements.

Table 11C. Baseline Morphology and Hydraulic Summary Aycock Springs UT 3

Parameter	USGS Gage Data		re-Exis Conditi	_	-	ect Refei larock P		-	ect Refe ipple Cr			Design			As-built	t
Dimension	Min Max Me	d Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS gage data i	s 4.1	5	4.5	8	12.1	8.1	3	6.1	4.6	7.2	8.3	7.8	4.7	7	5.9
Floodprone Width (ft)	unavailable for thi	s 7	18	12	15	25	18	150	150	150	20	70	50	10	20	20
BF Cross Sectional Area (ft2)	project			2.2			8			5.9			4.3	1.2	2.7	2.1
BF Mean Depth (ft)		0.4	0.5	0.5	0.8	1	0.8	0.7	1.5	1.1	0.5	0.7	0.6	0.2	0.4	0.4
BF Max Depth (ft)		0.8	1.1	1	1.1	1.4	1.4	1	2.3	1.7	0.7	0.9	0.8	0.5	0.6	0.6
Width/Depth Ratio		8.2	12.5	9.9	8	15.1	10.1	4	4.3	4.2	12	16	14	12	26	20
Entrenchment Ratio		1.7	3.6	2.5	1.9	2.2	2.1	24.6	50	37.3	2.6	9	6.4	2	4	3.3
Bank Height Ratio		1	3	2	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)				===			===			===			===			===
Hydraulic radius (ft)				===			===			===			===			===
Pattern																
Channel Beltwidth (ft)				iffles and		38	22.8	15.1	29.2	24.3	23	47	31	23	47	31
Radius of Curvature (ft)			ools du		11	27	16.5	8.9	19.4	13.2	14	31	23	14	31	23
Meander Wavelength (ft)		straig	htening	activties	44	116	68.4	31	74	47.8	47	94	66	47	94	66
Meander Width ratio					2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile																
Riffle length (ft)				iffles and			===			===			===	8	24	14
Riffle slope (ft/ft)			ools du		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	2.77%	6.47%	4.16%	0.52%	2.54%	1.71%
Pool length (ft)		straig	htening	activties			===			===			===	6	10	8
Pool spacing (ft)					25	69	37.2	14	39.6	32.4	23	62	31	23	62	31
Substrate																
d50 (mm)				===			===			===			===			===
d84 (mm)				===			===			===			===			===
Additional Reach Parameters																
Valley Length (ft)				===			===			===			===			===
Channel Length (ft)				===			===			===			===			===
Sinuosity				1.01			1.2			1.22			1.1			1.1
Water Surface Slope (ft/ft)				1.53%	_		2.58%		_	0.50%		_	1.27% - 3.35%			0.92%
BF slope (ft/ft)				===			===			===			===			===
Rosgen Classification				Eg			Е			E			E/C			E/C

Note: UT 3 is characterized by a pond in the headwaters; therefore, the channel was constructed with a smaller Bankfull Cross Sectional area than other tributaries associated with the project.

Table 11D. Baseline Morphology and Hydraulic Summary Aycock Springs UT 4

Parameter	USGS	Gage	Data		re-Exist Conditi	_	-	ect Refe larock P		-	ect Refe			Design			As-bu	ilt
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS	gage d	ata is	4.8	11.7	8.3	8	12.1	8.1	3	6.1	4.6	8.7	10	9.4	8	10.9	8.5
Floodprone Width (ft)	unavail	lable fo	r this	8	70	39	15	25	18	150	150	150	70	200	150			50
BF Cross Sectional Area (ft2)	p	project				6.3			8			5.9			6.3	3.5	5.6	4.3
BF Mean Depth (ft)				0.5	1.3	0.8	0.8	1	0.8	0.7	1.5	1.1	0.6	0.8	0.7	0.4	0.6	0.5
BF Max Depth (ft)				0.9	2	1.5	1.1	1.4	1.4	1	2.3	1.7	0.8	1.1	1	0.6	0.9	0.8
Width/Depth Ratio				3.7	23.4	12.4	8	15.1	10.1	4	4.3	4.2	12	16	14	16	22	19
Entrenchment Ratio				1.2	11.5	4.9	1.9	2.2	2.1	24.6	50	37.3	7.5	21.3	16	5	6	6
Bank Height Ratio				1.2	2.4	1.8	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)						===			===			===			===			===
Hydraulic radius (ft)						===			===			===			===			===
Pattern																		
Channel Beltwidth (ft)					attern o		20	38	22.8	15.1	29.2	24.3	28	56	38	28	56	38
Radius of Curvature (ft)					pools o		11	27	16.5	8.9	19.4	13.2	17	38	28	17	38	28
Meander Wavelength (ft)				straigh	ntening	activties	44	116	68.4	31	74	47.8	56	113	80	56	113	80
Meander Width ratio							2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile									_									
Riffle length (ft)					attern o				===			===			===	12	35	16
Riffle slope (ft/ft)					pools d		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	1.12%	2.60%	1.67%	0.61%	2.42%	1.28%
Pool length (ft)				straigh	itening a	activties			===			===			===	14	42	22
Pool spacing (ft)							25	69	37.2	14	39.6	32.4	28	75	38	28	75	38
Substrate																		
d50 (mm)						===			===			===			===			===
d84 (mm)						===			===			===			===			===
Additional Reach Parameters																		
Valley Length (ft)						===			===			===			===			===
Channel Length (ft)						===			===			===			===			===
Sinuosity						1.1			1.2			1.22			1.1			1.1
Water Surface Slope (ft/ft)						0.93%			2.58%			0.50%			0.93%			0.66%
BF slope (ft/ft)						===			===			===			===			===
Rosgen Classification						Eg			E			E			E/C			E/C

Table 11E. Baseline Morphology and Hydraulic Summary Aycock Springs Travis Creek

Parameter	USGS	S Gage Data		re-Exist Conditio	_	-	ect Refe larock P		-	ect Refe			Design	1		As-bu	ilt
Dimension	Min	Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS	S gage data is	30	51.7	41.4	8	12.1	8.1	3	6.1	4.6	25.7	29.6	27.7	25.2	30.3	26.7
Floodprone Width (ft)	unava	ailable for this	68	160	122	15	25	18	150	150	150	200	300	250			150
BF Cross Sectional Area (ft2)		project			54.9			8			5.9			54.9	41.3	73.9	51.2
BF Mean Depth (ft)			1.1	1.8	1.4	0.8	1	0.8	0.7	1.5	1.1	1.9	2.1	2	1.6	2.4	2
BF Max Depth (ft)			3.3	4.1	3.7	1.1	1.4	1.4	1	2.3	1.7	2.7	3	2.8	2.3	3.4	2.8
Width/Depth Ratio			16.7	47	32.1	8	15.1	10.1	4	4.3	4.2	12	16	14	12	16	13
Entrenchment Ratio			1.6	5.3	3.2	1.9	2.2	2.1	24.6	50	37.3	7.2	10.8	9	5	6	5.6
Bank Height Ratio			1	1.1	1	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)					===			===			===			===			===
Hydraulic radius (ft)					===			===			===			===			===
Pattern																	
Channel Beltwidth (ft)					ffles and		38	22.8	15.1	29.2	24.3	83	166	111	83	166	111
Radius of Curvature (ft)			•	ools due		11	27	16.5	8.9	19.4	13.2	55	111	83	55	111	83
Meander Wavelength (ft)			straigh	ntening a	activties	44	116	68.4	31	74	47.8	166	332	236	166	332	236
Meander Width ratio						2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile																	
Riffle length (ft)			•		ffles and			===			===			===	16	87	54
Riffle slope (ft/ft)			•	ools due		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	0.28%	0.64%	0.41%	0.00%	0.70%	0.19%
Pool length (ft)			straigh	ntening a	activties			===			===			===	27	70	43
Pool spacing (ft)						25	69	37.2	14	39.6	32.4	83	222	111	83	222	111
Substrate																	
d50 (mm)					===			===			===			===			===
d84 (mm)					===			===			===			===			===
Additional Reach Parameters																	
Valley Length (ft)					===			===			===			===			===
Channel Length (ft)					===			===			===			===			===
Sinuosity					1.05			1.2			1.22			1.05			1.05
Water Surface Slope (ft/ft)					NA			2.58%			0.50%			0.23%			0.10%
BF slope (ft/ft)					===			===			===			===			===
Rosgen Classification					Fc			Е			Е			E/C			E/C

Table 12A. Morphology and Hydraulic Monitoring Summary
Aycock Travis Creek (Downstream) - Stream and Wetland Restoration Site

Parameter		XS 1 R	iffle (Tra	vis Do	wn)			XS 2 I	Riffle (Travis	Down	1)		XS 3 I	Pool (T	ravis l	Down)			XS 4	Riffle ((Travi	s Down	1)		XS 5	Pool (Γravis	Down)		XS 6 F	Riffle (Travis	Down)	1
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY	5 MY	0 MY1	MY2	MY3	3 MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	26	26.7	26.4	27.3			25.2	26.2	26.3	28.3			33.7	33.2	35.4	39			25.5	27	26.5	28.4			26	26.7	26	25.7			27.3	27.7	26.8	28.9		
Floodprone Width (ft)	150	150	150	150			150	150	150	150									150	150	150	150									150	150	150	150		
BF Cross Sectional Area (ft2)	41.3	40	40.1	40.1			47.5	47.4	47.9	47.9			58.7	55.8	57.2	57.2			47.2	44.6	43.8	43.8			61.4	58.1	52.3	52.3			54.9	50.6	50.3	50.3		
BF Mean Depth (ft)	1.6	1.5	1.5	1.5			1.9	1.8	1.8	1.7			1.7	1.7	1.6	1.5			1.9	1.7	1.7	1.5			2.4	2.2	2.0	2			2.0	1.8	1.9	1.7		
BF Max Depth (ft)	2.3	2.3	2.2	2.3			2.5	2.5	2.6	2.9			3.7	3.5	3.7	3.6			2.5	2.6	2.6	2.7			4	3.7	3.2	3.3			3	2.9	2.8	3		
Width/Depth Ratio	16.4	17.8	17.4	18.6			13.4	14.5	14.4	16.7									13.8	16.3	16.0	18.4									13.6	15.2	14.3	16.6		
Entrenchment Ratio	5.8	5.6	5.7	5.5			6.0	5.7	5.7	5.3									5.9	5.6	5.7	5.3									5.5	5.4	5.6	5.2		
Bank Height Ratio	1.0	1.0	1.0	1.0			1.0	1.0	1.04	<1.0									1.0	1.04	1.04	<1									1.0	1.0	1.0	1.0		
Wetted Perimeter (ft)	27.1	27.4	27.2	28			26.4	27.5	27.3	29.5			34.8	34.4	36.4	40.2			26.6	28	27.5	29.6			27.6	28.2	27.3	26.9			28.7	29.1	27.9	30.4		
Hydraulic Radius (ft)	1.5	1.5	1.5	1.4			1.8	1.7	1.8	1.6			1.7	1.6	1.6	1.4			1.8	1.6	1.6	1.5			2.2	2.1	1.9	1.9			1.9	1.7	1.8	1.7		
Substrate																																				
d50 (mm)																																				
d84 (mm)																																				

Parameter		XS 7 P	ool (Trav	vis Dov	vn)			XS 8 R	Riffle (Travis	Down)		XS 9 F	Pool (T	ravis l	Down)			XS 10	Pool (Travis	Down	1)	2	KS 11 1	Riffle (Travis	s Down	1)
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	25.9	27.7	25.7	25.1			28.1	28.5	28.6	28			29.3	29.1	29.7	27.8			38.6	38.6	39.1	37.5			30.3	29.8	30.5	30.7		
Floodprone Width (ft)							150	150	150	150															150	150	150	150		
BF Cross Sectional Area (ft2)	60	45.8	44.9	44.9			64.6	57.4	58.3	58.3			65.9	63.1	60.8	60.8			100.1	91	87.5	87.5			73.9	66.6	69.6	69.6		
BF Mean Depth (ft)	2.3	1.7	1.7	1.8			2.3	2.0	2.0	2.1			2.2	2.2	2.0	2.2			2.6	2.4	2.2	2.3			2.4	2.2	2.3	2.3		
BF Max Depth (ft)	3.9	2.8	2.5	3			3.3	3.1	3.1	3.4			3.7	3.4	3.4	3.8			4.3	4.2	4.1	4.3			3.4	3.6	3.6	3.6		
Width/Depth Ratio							12.2	14.2	14.0	13.4															12.4	13.3	13.4	13.6		
Entrenchment Ratio							5.3	5.3	5.2	5.4															5.0	5.0	4.9	4.9		
Bank Height Ratio							1.0	1.0	1.0	1.0										-					1.00	1.06	1.06	1.0		
Wetted Perimeter (ft)	27.5	29.1	26.8	26.2			29.5	29.7	29.8	29.8			30.6	30.3	30.8	29.4			40.2	40	40.4	39.1			31.8	31.4	32.1	32.1		
Hydraulic Radius (ft)	2.2	1.6	1.7	1.7			2.2	1.9	2.0	2			2.2	2.1	2.0	2.1			2.5	2.3	2.2	2.2			2.3	2.1	2.2	2.2		
Substrate																														
d50 (mm)																				-			, The state of the	·						
d84 (mm)																				-			, The state of the	·						

Table 12B. Morphology and Hydraulic Monitoring Summary Aycock Travis Creek (Upstream) - Stream and Wetland Restoration Site

Parameter		XS 12	Riffle (T	ravis U	J p)			XS 1	3 Pool	(Trav	is Up)			XS 14	Riffle	(Travi	is Up)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	29	29.6	29.7	31.3			26.9	26.9	27.8	27.8			32.8	32.3	31.9	33.6		
Floodprone Width (ft)	150	150	150	150									150	150	150	150		
BF Cross Sectional Area (ft2)	68.7	66.4	67.9	67.9			64.0	50.3	51.9	48.2			104.5	92.4	94.6	94.6		
BF Mean Depth (ft)	2.4	2.2	2.3	2.2			2.4	1.9	1.9	1.7			3.2	2.9	3.0	2.8		
BF Max Depth (ft)	3.4	3.5	3.5	3.5			3.9	3.3	3.2	3.5			4.8	4.1	4.5	4.6		
Width/Depth Ratio	12.2	13.2	13.0	14.4									10.295	11.29	10.76	11.9		
Entrenchment Ratio	5.2	5.1	5.1	4.8									4.6	4.6	4.7	4.5		
Bank Height Ratio	1.00	1.03	1.03	1.03									1.0	1.0	1.0	1.0		
Wetted Perimeter (ft)	30.4	30.8	30.9	32.5			28.8	28.1	28.8	32.5			35.0	34.2	33.8	35.8		
Hydraulic Radius (ft)	2.3	2.2	2.2	2.1			2.2	1.8	1.8	2.1			3.0	2.7	2.8	2.6		
Substrate																		
d50 (mm)																		
d84 (mm)																		

Table 12C. Morphology and Hydraulic Monitoring Summary Aycock UT-1 - Stream and Wetland Restoration Site

Parameter		XS	1 Riffle	(UT 1))			XS	2 Rif	fle (U	Γ1)			X	S 3 Po	ol (UT	· 1)			XS	4 Riff	fle (UT	Γ1)			XS	5 Rif	fle (UT	Γ1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	9.3	9.2	9.7	9.1			8.8	9.3	9.2	10.2			8.4	8.4	9.3	9.5			9.3	9.7	9.3	10.2			9.6	9.5	9.3	9.2		
Floodprone Width (ft)	90	90	90	90			90	90	90	90									90	90	90	90			90	90	90	90		
BF Cross Sectional Area (ft2)	5.6	4.7	4.4	4.4			4.6	3.7	3.7	3.7			6.7	5.6	6.4	6.4			6.2	5.5	5.7	5.7			6.6	5.9	5.8	5.8		
BF Mean Depth (ft)	0.6	0.5	0.5	0.5			0.5	0.4	0.4	0.4			0.8	0.7	0.7	0.7			0.7	0.6	0.6	0.6			0.7	0.6	0.6	0.6		
BF Max Depth (ft)	1.1	0.8	0.9	0.8			0.7	0.6	0.7	0.6			1.3	1.2	1.3	1.4			1	0.9	0.9	0.9			1.1	1.1	1	1		
Width/Depth Ratio	15.4	18.0	21.4	18.8			16.8	23.4	22.9	28.1									14.0	17.1	15.2	18.4			14.0	15.3	14.9	14.8		
Entrenchment Ratio	9.7	9.8	9.3	9.9			10.2	9.7	9.8	8.8									9.7	9.3	9.7	8.8			9.4	9.5	9.7	9.8		
Bank Height Ratio	1.0	1.0	1.0	1.0			1.0	1.0	1.0	<1									1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0		
Wetted Perimeter (ft)	9.7	9.4	10	9.3			9	9.4	9.4	10.3			8.9	8.9	9.8	10			9.7	10	9.6	10.5			10	10	9.8	9.7		
Hydraulic Radius (ft)	0.6	0.5	0.4	0.5			0.5	0.4	0.4	0.4			0.7	0.6	0.7	0.6			0.6	0.6	0.6	0.5			0.7	0.6	0.6	0.6		
Substrate																														
d50 (mm)																														
d84 (mm)																														

Parameter		XS	6 Riffle	(UT 1)			XS	7 Rif	fle (U	T 1)			X	S 8 Po	ol (UT	T 1)			XS	9 Rif	fle (U	Γ1)			XS	10 Pc	ol (UT	1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	6.9	7.5	6.7	6.9			7.5	7.2	7.3	6.7			7.8	8.7	7.2	6			7.9	7.2	7.6	6.7			7.6	7	6.9	5.5		
Floodprone Width (ft)	90	90	90	90			90	90	90	90									90	90	90	90								
BF Cross Sectional Area (ft2)	3.6	1.9	2.2	2.2			3.9	2.4	2.4	2.4			5.7	4.1	3.6	3.6			3	4.1	1.6	1.6			4.7	5.6	5.5	5.5		
BF Mean Depth (ft)	0.5	0.3	0.3	0.3			0.5	0.3	0.3	0.4			0.7	0.5	0.5	0.6			0.4	0.6	0.2	0.2			0.6	0.8	0.8	1		
BF Max Depth (ft)	0.7	0.4	0.4	0.4			0.7	0.6	0.6	0.7			1.2	1	0.9	1			0.7	1.1	0.4	0.6			1.1	1.3	1.2	1.4		
Width/Depth Ratio	13.2	29.6	20.4	21.9			14.4	21.6	22.2	18.9									20.8	12.6	36.1	28.1								
Entrenchment Ratio	13.0	12.0	13.4	13.1			12.0	12.5	12.3	13.4									11.4	12.5	11.8	13.5								
Bank Height Ratio	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0									1.0	1.0	1.0	1.0								
Wetted Perimeter (ft)	7.2	7.6	6.8	7			7.8	7.3	7.5	6.9			8.3	9.1	7.5	6.6			8	7.8	7.7	7			8	7.7	7.7	6.6		
Hydraulic Radius (ft)	0.5	0.3	0.3	0.3			0.5	0.3	0.3	0.3			0.7	0.5	0.5	0.6			0.4	0.5	0.2	0.2			0.6	0.7	0.7	0.8		
Substrate																														
d50 (mm)																														
d84 (mm)																														

Parameter		XS 1	1 Riffle	(UT 1)			XS	12 Ri	ffle (U	T 1)			XS	13 Po	ol (U)	Γ1)			XS	14 Rif	ffle (U	T 1)			XS	15 Rif	fle (U	T 1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	7.4	7	7.8	8.4			8	7.4	6.4	7.3			8.6	8	8.3	8.3			6.4	6.3	6.3	6.2			7.1	7.2	6.3	5.6		
Floodprone Width (ft)	90	90	90	90			90	90	90	90									90	90	90	90			90	90	90	90		
BF Cross Sectional Area (ft2)	3.5	3.5	3.5	3.5			3.7	2.8	2.8	2.8			6.5	4.3	4.7	4.7			3.1	2.8	2.8	2.8			4	3.3	2.4	2.4		
BF Mean Depth (ft)	0.5	0.5	0.4	0.4			0.5	0.4	0.4	0.4			0.8	0.5	0.6	0.6			0.5	0.4	0.4	0.4			0.6	0.5	0.4	0.4		
BF Max Depth (ft)	0.8	0.8	0.7	0.9			0.7	0.6	0.6	0.6			1.2	1.2	1.3	1.3			0.7	0.6	0.7	0.6			0.9	0.8	0.7	0.9		
Width/Depth Ratio	15.6	14.0	17.4	19.8			17.3	19.6	14.6	18.8									13.2	14.2	14.2	14.0			12.6	15.7	16.5	13.0		
Entrenchment Ratio	12.2	12.9	11.5	10.8			11.3	12.2	14.1	12.3									14.1	14.3	14.3	14.4			12.7	12.5	14.3	16.1		
Bank Height Ratio	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0									1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0		
Wetted Perimeter (ft)	7.8	7.3	8.1	8.9			8.5	7.6	6.6	7.5			9.2	8.5	9.0	9.0			6.8	6.5	6.6	6.5			7.4	7.6	6.6	6.1		
Hydraulic Radius (ft)	0.4	0.5	0.4	0.4			0.4	0.4	0.4	0.4			0.7	0.5	0.5	0.5			0.5	0.4	0.4	0.4			0.5	0.4	0.4	0.4		
Substrate																														
d50 (mm)																														
d84 (mm)																														

Table 12C continued. Morphology and Hydraulic Monitoring Summary

Aycock UT-1 - Stream and Wetland Restoration Site

Parameter		XS	16 Riffl	le (UT	1)			XS	17 Rif	fle (U	T 1)			XS	18 Ri	ffle (U	T 1)			XS	19 Po	ol (U)	Γ1)			XS	20 Rif	fle (U	T 1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	9	8.3	8.5	8.8			8.5	8.1	7.4	7.4			7.1	7.2	6.7	6.9			7.6	7.7	8.1	8.1			9.1	8.5	8.7	9.4		
Floodprone Width (ft)	90	90	90	90			90	90	90	90			90	90	90	90									90	90	90	90		
BF Cross Sectional Area (ft2)	4.6	2.6	2.8	2.8			3.9	3.6	3.7	3.7			3.5	3.4	3.6	3.6			6.5	5.4	5.3	5.3			5.3	4.4	4.9	4.9		
BF Mean Depth (ft)	0.5	0.3	0.3	0.3			0.5	0.4	0.5	0.5			0.5	0.5	0.5	0.5			0.9	0.7	0.7	0.7			0.6	0.5	0.6	0.5		
BF Max Depth (ft)	0.8	0.5	0.5	0.5			0.7	0.7	0.8	0.9			0.6	0.7	0.8	0.9			1.3	1	1.1	1.2			0.9	0.7	0.8	0.8		
Width/Depth Ratio	17.6	26.5	25.8	27.6			18.5	18.2	14.8	14.5			14.4	15.2	12.5	13.5									15.6	16.4	15.4	18.1		
Entrenchment Ratio	10.0	10.8	10.6	10.2			10.6	11.1	12.2	12.2			12.7	12.5	13.4	13.0									9.9	10.6	10.3	9.6		
Bank Height Ratio	1.0	1.0	1.0	1.0			1.0	1.0	1.14	1.11			1.0	1.16	1.33	1.22									1.0	1.0	1.0	1.0		
Wetted Perimeter (ft)	9.3	8.4	8.7	9.0			8.7	8.3	7.7	7.7			7.4	7.4	7.0	7.4			8.2	8.3	8.7	8.6			9.4	8.7	9.0	9.8		
Hydraulic Radius (ft)	0.5	0.3	0.3	0.3			0.5	0.4	0.5	0.5			0.5	0.5	0.5	0.5			0.8	0.7	0.6	0.6			0.6	0.5	0.5	0.5		
Substrate																														
d50 (mm)																														
d84 (mm)																														

Parameter		XS	21 Poo	l (UT	1)			XS	22 Rif	ffle (U	T 1)			XS	23 Rif	ffle (U	Г 1)			XS	24 Rif	ffle (U	T 1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	8.3	8.2	9.7	8.4			7.2	7.5	7.3	6.4			7.6	6.8	7	7			8	7.7	7.6	7.8		
Floodprone Width (ft)							90	90	90	90			90	90	90	90			90	90	90	90		
BF Cross Sectional Area (ft2)	9.3	5.9	5.4	5.4			3.6	3.4	3.3	3.3			3.2	3.2	3	3			4	3.2	3.4	3.4		
BF Mean Depth (ft)	1.1	0.7	0.6	0.6			0.5	0.5	0.5	0.5			0.4	0.5	0.4	0.4			0.5	0.4	0.4	0.4		
BF Max Depth (ft)	2.1	1.4	1.3	1.7			0.7	0.7	0.7	1.0			0.6	0.6	0.7	0.9			0.7	0.7	0.7	0.7		
Width/Depth Ratio							14.4	16.5	16.1	12.4			18.1	14.5	16.3	16.1			16.0	18.5	17.0	17.7		
Entrenchment Ratio							12.5	12.0	12.3	14.1			11.8	13.2	12.9	12.9			11.3	11.7	11.8	11.6		
Bank Height Ratio							1.0	1.0	1.0	1.0			1.0	1.0	1.17	1.10			1.0	1.0	1.0	1.0		
Wetted Perimeter (ft)	9.5	9.2	10.4	10			7.5	7.8	7.5	6.8			9.3	7.0	7.2	7.4			9.3	7.8	7.8	8		
Hydraulic Radius (ft)	1	0.6	0.5	0.5			0.5	0.4	0.4	0.5			0.5	0.5	0.4	0.4			0.5	0.4	0.4	0.4		
Substrate		·																						
d50 (mm)																								
d84 (mm)																								

Table 12D. Morphology and Hydraulic Monitoring Summary Aycock UT-2 - Stream and Wetland Restoration Site

Parameter		X	S 1 Pool	(UT 2	2)			X	S 2 Rif	fle (U	T 2)			XS	3 Rif	fle (U	T 2)			XS	4 Riff	fle (U	T 2)		2	KS 5 I	Riffle	(UT	2)			XS	6 6 Ri	ffle (U	JT 2)			X	S 7 P	ool (U	JT 2)	
Dimension	MY 0	MY1	MY2	MY3	MY	4 MY5	MY	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4 MY	75 MY	Y 0 M	1Y1	MY2	MY3	MY4 M	IY5 MY	0 MY	/1 M	Y2 M	1Y3 I	MY4 I	MY5 M	Y 0	MY1	MY2	2 MY	3 MY	Y4 MY:	MY) MY	MY	2 MY	′3 MY	74 MY5
BF Width (ft)	6.5	6.3	6.9	7.3			4.8	5.6	5.5	5.6			5.7	5.3	5.8	5.8		6.	.4 5	5.7	5.4	5.4		8.4	7.	7 8.	.5	9.9			5.9	7	6.8	6.4	ŀ		8.3	9.4	8.2	8.4	1	
Floodprone Width (ft)							90	90	90	90			90	90	90	90		9	0 9	90	90	90		90	90) 9	0 9	90			90	90	90	90	,						- T	
BF Cross Sectional Area (ft2)	3.8	2.1	3.2	2.2			1	1.1	1	1			1.7	1.4	1.2	1.2		1	1 (0.9	0.9	0.9		3.1	2.	8 2.	.9 2	2.9			2.3	1.4	1	1			5.1	4.1	3.8	3.8	3	
BF Mean Depth (ft)	0.6	0.3	0.5	0.3			0.2	0.2	0.2	0.2			0.3	0.3	0.2	0.2		0.	.2	0.2	0.2	0.2		0.4	0.4	4 0.	.3 (0.3		(0.3	0.2	0.1	0.2	1		0.6	0.4	0.5	0.5	5	
BF Max Depth (ft)	1	0.6	0.7	0.6			0.3	0.3	0.2	0.3			0.5	0.5	0.5	0.4		0.	.4 (0.3	0.3	0.3		0.7	0.	6 0.	.6 (0.5		(0.6	0.3	0.3	0.3	,		1.1	0.8	0.8	0.9)	
Width/Depth Ratio							23.0	28.5	30.3	32.3			19.1	20.1	28.0	26.9		41	1.0 3	6.1	32.4	33.0		22.8	3 21.	.2 24	.9 3	3.2		2	0.7	35.0	46.2	40.5	5						- T	
Entrenchment Ratio							18.8	16.1	16.4	16.2			15.8	17.0	15.5	15.6		14	1.1	5.8	16.7	16.7		10.7	11.	.7 10	.6	9.1		1	3.0	12.9	13.2	14.1	1						- T	
Bank Height Ratio							1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0		1.	.0 1	1.0	1.0	1.0		1.0	1.0	0 1.	.0	<1			1.0	1.0	1.0	1.0	,						- T	
Wetted Perimeter (ft)	6.9	6.5	7.2	7.4			4.9	5.7	5.6	5.6			5.8	5.4	6.0	5.9		6.	.5 5	5.7	5.5	5.5		8.6	7.	9 8.	6 1	0.0		,	7.0	7.0	6.9	6.4	ŀ		8.8	9.5	8.4	8.6	5	
Hydraulic Radius (ft)	0.6	0.3	0.4	0.3			0.2	0.2	0.2	0.2			0.3	0.3	0.2	0.2		0.	.2	0.2	0.2	0.2		0.4	0.4	4 0.	.3 (0.3		(0.3	0.2	0.1	0.2	2		0.6	0.4	0.5	0.4	1	
Substrate																																										
d50 (mm)																											-								-						-	
d84 (mm)																											-								-						- [

Parameter		XS	8 Riffl	e (UT	2)			XS	9 Rif	fle (U	Γ2)			XS	10 P	ool (U'	Γ2)			X	S 11 P	ool (U	T 2)			XS	12 Ri	ffle (U	JT 2)			XS	13 Ri	ffle (U	T 2)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY.	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	8.6	8.3	8.3	10.1			7.4	7.9	7.9	8.5			7.5	7.8	7.6	6.7			6.2	6.4	5.6	5.8			8.3	9.2	7.7	7.2			7.2	7.6	7.4	6.7		
Floodprone Width (ft)	90	90	90	90			90	90	90	90															90	90	90	90			90	90	90	90		
BF Cross Sectional Area (ft2)	3.6	3.1	2.8	2.8			4.2	3.8	4.4	4.4			5.2	4	4	4			3.5	2.7	2.5	2.5			3.2	2.3	1.9	1.9			2.1	1.7	1.8	1.8		
BF Mean Depth (ft)	0.4	0.4	0.3	0.3			0.6	0.5	0.6	0.5			0.7	0.5	0.5	0.6			0.6	0.4	0.4	0.4			0.4	0.3	0.2	0.3			0.3	0.2	0.2	0.3		
BF Max Depth (ft)	0.6	0.5	0.5	0.5			0.8	0.7	0.8	0.9			1.3	0.9	0.8	1.1			0.8	0.7	0.7	0.7			0.7	0.5	0.7	0.5			0.4	0.3	0.4	0.4		
Width/Depth Ratio	20.5	22.2	24.6	36.6			13.0	16.4	14.2	16.5															21.5	36.8	31.2	27.4			24.7	34.0	30.4	24.8		
Entrenchment Ratio	10.5	10.8	10.8	8.9			12.2	11.4	11.4	10.5															10.8	9.8	11.7	12.5			12.5	11.8	12.2	13.4		
Bank Height Ratio	1.0	1.0	1.0	<1			1.0	1.0	1.0	1.0															1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0		
Wetted Perimeter (ft)	8.8	8.5	8.6	10.3			7.7	8.1	8.2	8.5			8.1	8.2	8.0	7.2			6.6	6.6	5.8	6.1			8.6	9.3	8.0	7.4			7.3	7.7	7.5	6.8		
Hydraulic Radius (ft)	0.4	0.4	0.3	0.3			0.5	0.5	0.5	0.5			0.7	0.5	0.5	0.6			0.5	0.4	0.4	0.4			0.4	0.2	0.2	0.3			0.3	0.2	0.2	0.3		
Substrate																																				
d50 (mm)																																				
d84 (mm)																																				

Table 12E. Morphology and Hydraulic Monitoring Summary Aycock UT-3 - Stream and Wetland Restoration Site

Parameter		XS	1 Riffle	(UT	3)			XS	2 Riff	le (U'	Г 3)			XS	3 Poo	ol (UT	3)			XS	4 Riff	le (U'	T 3)			XS	5 Riff	le (U'	Γ3)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	6.5	6.9	6.7	7.2			4.7	5.2	5.2	5.1			5	5.4	5.2	5.7			7	6.8	6.9	7.5			5.3	5.6	5.8	6.5		
Floodprone Width (ft)	10	11	11	11			20	8	8	8									20	20	20	20			20	20	20	20		
BF Cross Sectional Area (ft2)	2.7	2.3	2.4	2.4			1.9	1.6	1.9	1.9			3.6	3.2	3.2	3.2			2.2	1.9	1.7	1.7			1.2	1.1	1.2	1.2		
BF Mean Depth (ft)	0.4	0.3	0.4	0.3			0.4	0.3	0.4	0.4			0.7	0.6	0.6	0.6			0.3	0.3	0.2	0.2			0.2	0.2	0.2	0.2		
BF Max Depth (ft)	0.6	0.6	0.6	0.7			0.6	0.5	0.6	0.6			1	0.9	0.8	0.8			0.5	0.4	0.4	0.4			0.5	0.4	0.4	0.4		
Width/Depth Ratio	15.6	20.7	18.7	21.8			11.6	16.9	14.2	13.9									22.3	24.3	28.0	33.7			23.4	28.5	28.0	35.4		
Entrenchment Ratio	1.5	1.6	1.6	1.5			4.3	1.5	1.5	1.6									2.9	2.9	2.9	2.7			3.8	3.6	3.4	3.1		
Bank Height Ratio	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0									1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0		
Wetted Perimeter (ft)	6.8	7.1	6.9	7.5			5.0	5.3	5.4	5.3			5.7	5.8	5.7	6.2			7.1	6.9	7.0	7.7			5.7	5.8	6.0	6.7		
Hydraulic Radius (ft)	0.4	0.3	0.3	0.3			0.4	0.3	0.4	0.4			0.6	0.6	0.6	0.5			0.3	0.3	0.2	0.2			0.2	0.2	0.2	0.2		ı .
Substrate																														
d50 (mm)																														
d84 (mm)																														1

Table 12F. Morphology and Hydraulic Monitoring Summary Aycock UT-4 - Stream and Wetland Restoration Site

Parameter		XS	1 Riffle	(UT	4)	·		X	S 2 Po	ol (UT	'4)	•		XS	3 Riff	fle (U'	Γ4)	•		X	S 4 Po	ol (UT	'4)	•		XS	5 Rif	fle (U'	Ր 4)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	8.3	9.4	8.8	9.1			8.5	9.1	9.5	9.2			8.6	8.7	8.4	9			8.5	10.6	10.7	10.5			8	8.3	7.8	7.9		
Floodprone Width (ft)	50	50	50	50									50	50	50	50									50	50	50	50		
BF Cross Sectional Area (ft2)	3.7	3.3	3.3	3.3			6.4	5.4	5.8	5.8			4.3	3.4	3.5	3.5			6.2	5.2	5.6	5.6			4.3	4.1	3.8	3.8		
BF Mean Depth (ft)	0.4	0.4	0.4	0.4			0.8	0.6	0.6	0.6			0.5	0.4	0.4	0.4			0.7	0.5	0.5	0.5			0.5	0.5	0.5	0.5		
BF Max Depth (ft)	0.6	0.5	0.6	0.6			1.5	1	1.1	1			0.8	0.5	0.6	0.6			1.2	1	1.1	1.2			0.7	0.7	0.7	0.7		
Width/Depth Ratio	18.6	26.8	23.5	25.2									17.2	22.3	20.2	23.2									14.9	16.8	16.0	16.5		
Entrenchment Ratio	6.0	5.3	5.7	5.5									5.8	5.7	6.0	5.6									6.3	6.0	6.4	6.3		
Bank Height Ratio	1.0	1.0	1.0	1.0									1.0	1.0	1.0	1.0									1.0	1.0	1.0	1.0		
Wetted Perimeter (ft)	8.6	9.5	9.0	9.3			9.2	9.5	10.0	9.8			9.0	8.8	8.6	9.1			9.1	10.9	11.1	11.0			8.3	8.5	8.1	8.2		
Hydraulic Radius (ft)	0.4	0.3	0.4	0.4			0.7	0.6	0.6	0.6			0.5	0.4	0.4	5.6			0.7	0.5	0.5	0.5			0.5	0.5	0.5	0.5		
Substrate																														
d50 (mm)																					-									
d84 (mm)																														

Parameter		XS	6 Riffle	(UT 4	1)			XS	7 Riff	fle (UT	Γ4)			XS	8 Riff	fle (UT	Γ4)	
.	2577.0	2.5774	1.5774	1.5772	25774	25775	2577.0	2.5774	25772	2.5712	25774		2577.0	25774	2.5770	2.5772	25774	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MYI	MY2	MY3	MY4	MY5	MYO	MYI	MY2	MY3	MY4	MY5
BF Width (ft)	8.1	8.9	8.9	8.4			9.9	11.7	9.1	9.8			10.9	11.1	11	10.6		
Floodprone Width (ft)	50	50	50	50			50	50	50	50			50	50	50	50		
BF Cross Sectional Area (ft2)	3.5	3.3	3.3	3.3			5.6	4.9	5	5			5.6	4.9	4.9	4.9		
BF Mean Depth (ft)	0.4	0.4	0.4	0.4			0.6	0.4	0.5	0.5			0.5	0.4	0.4	0.5		
BF Max Depth (ft)	0.6	0.5	0.6	0.7			0.9	0.6	0.8	0.7			0.8	0.7	0.7	0.7		
Width/Depth Ratio	18.7	24.0	24.0	21.7			17.5	27.9	16.6	19			21.2	25.1	24.7	22.9		
Entrenchment Ratio	6.2	5.6	5.6	5.9			5.1	4.3	5.5	5.1			4.6	4.5	4.5	4.7		
Bank Height Ratio	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0		
Wetted Perimeter (ft)	8.4	9.0	9.0	8.9			10.2	11.9	9.4	10			11.1	11.3	11.2	10.8		
Hydraulic Radius (ft)	0.4	0.4	0.4	0.4			0.6	0.4	0.5	0.5			0.5	0.4	0.4	0.5		
Substrate																		
d50 (mm)																		
d84 (mm)																		

APPENDIX E HYDROLOGY DATA

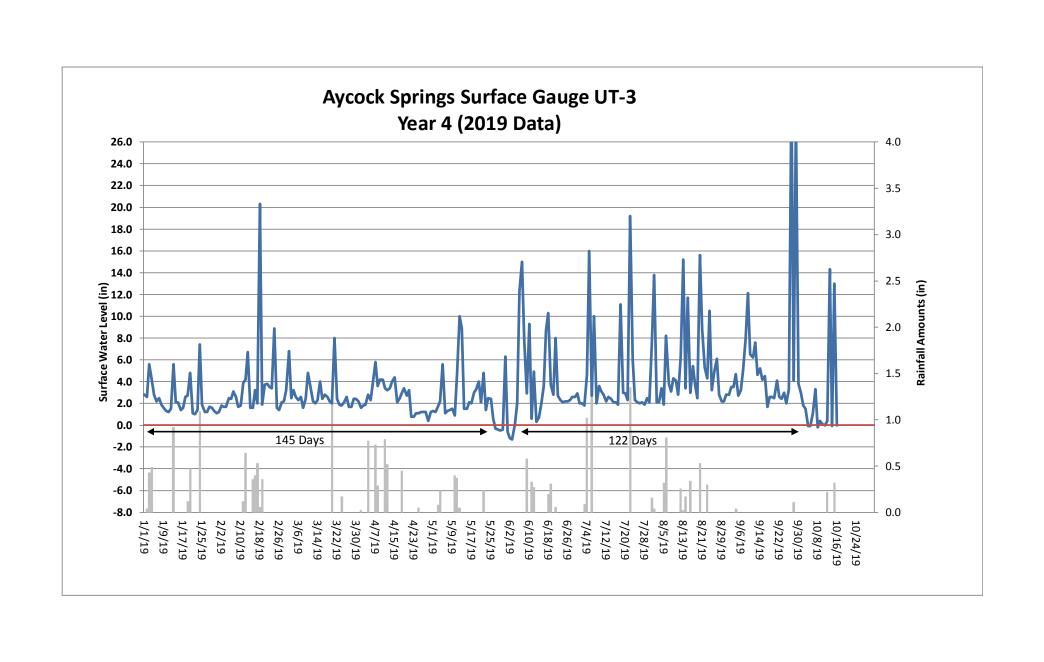
Table 13. UT3 Channel Evidence

Stream Gauge Graphs

Table 14. Verification of Bankfull Events

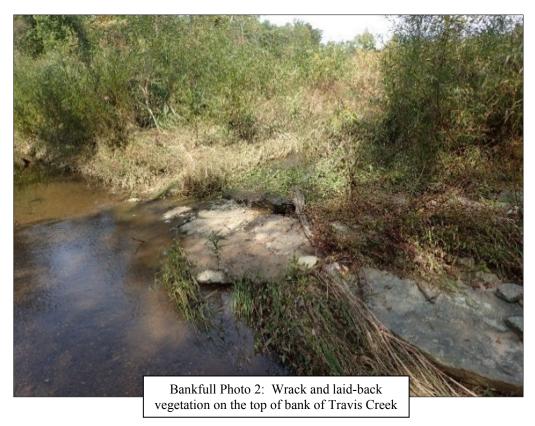
Groundwater Gauge Graphs

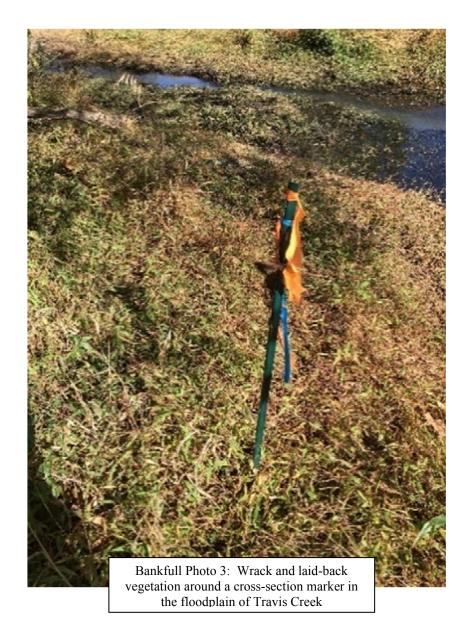
Table 15. Groundwater Hydrology Data

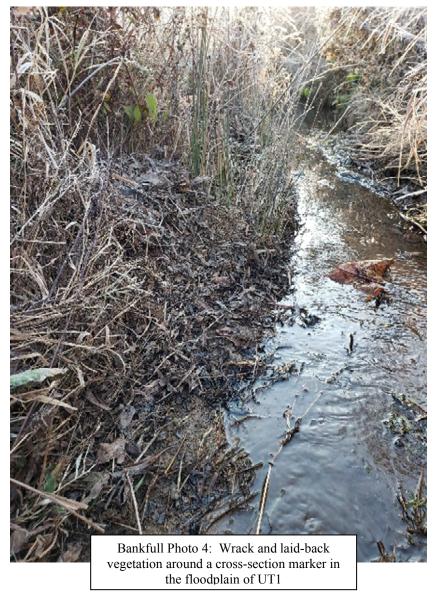

Table 13. UT3 Channel Evidence

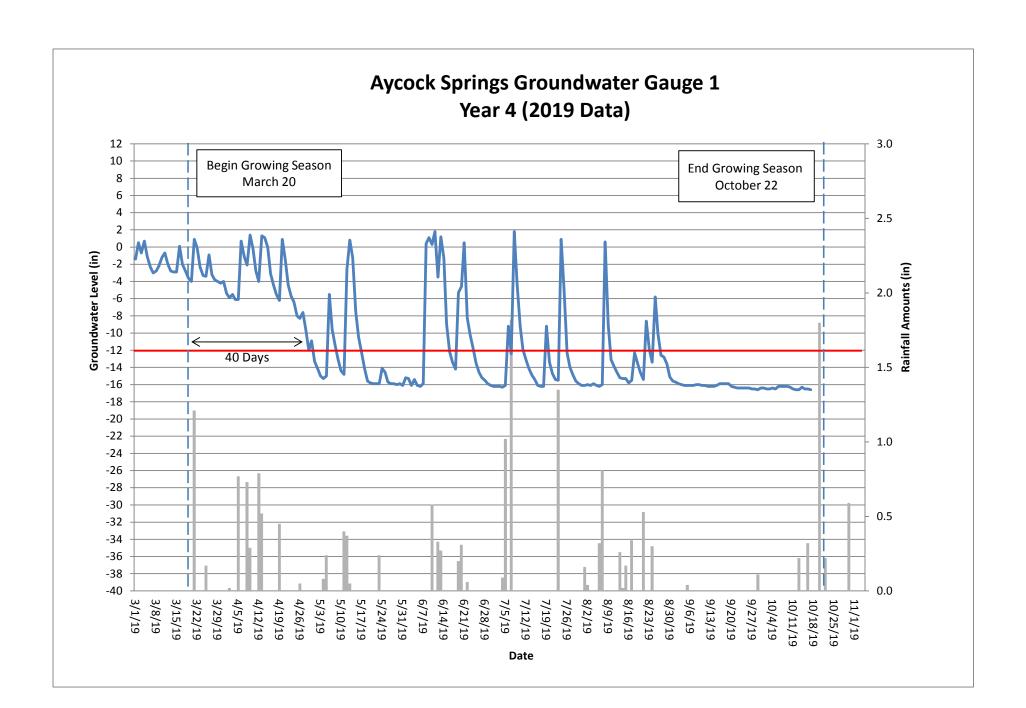
UT3 Channel Evidence	Year 1 (2016)	Year 2 (2017)	Year 3 (2018)	Year 4 (2019)
Max consecutive days channel flow	37	110	276	145
Presence of litter and debris (wracking)	Yes	Yes	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes	Yes
Sediment deposition and/or scour indicating sediment transport	Yes	Yes	Yes	Yes
Water staining due to continual presence of water	Yes	Yes	Yes	Yes
Formation of channel bed and banks	Yes	Yes	Yes	Yes
Sediment sorting within the primary path of flow	Yes	Yes	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes	Yes	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes	Yes	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	No	No	No
Other:				

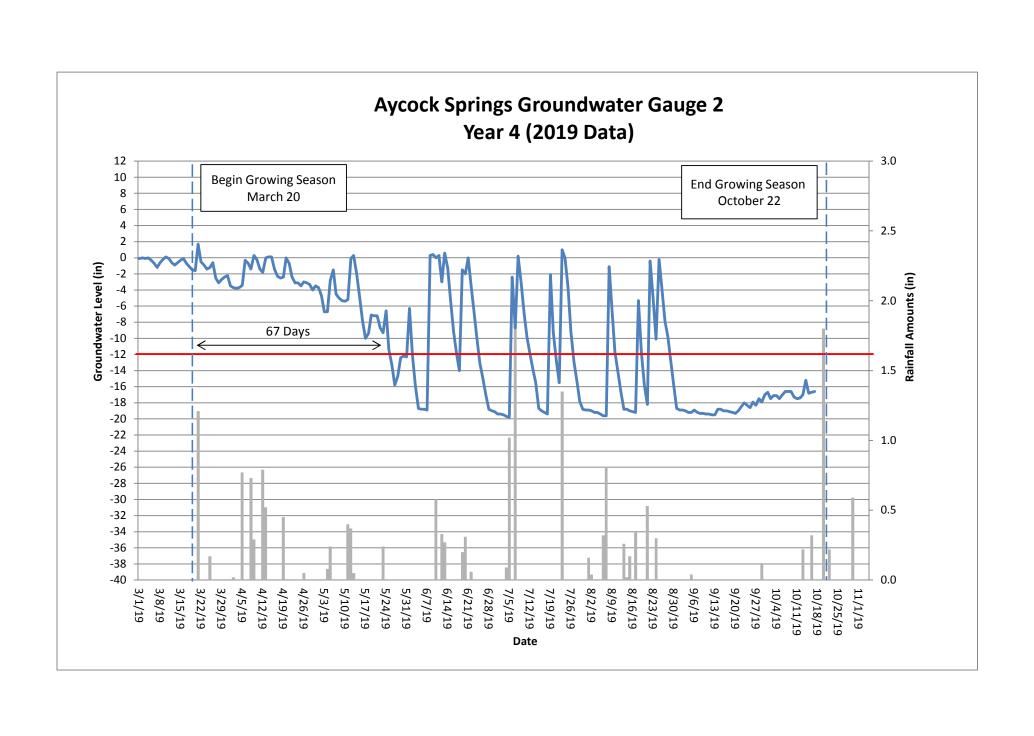
UT-3 11-21-2019




Table 14. Verification of Bankfull Events


Date of Data Collection	Date of Occurrence	Method	Photo (if available)
May 5, 2016	May 3, 2016	Wrack, laid-back vegetation, sediment, and standing water observed in the floodplain after 1.55 inches of rain documented* on May 3, 2016 at a nearby rain gauge.	1
October 13, 2016	September 28, 2016	2.05 inches of rain was recorded on September 28, 2016 at an onsite rain gauge.	
October 13, 2016	October 8, 2016	Wrack and laid-back vegetation observed on top of bank after 3.05 inches of rain was recorded on October 8, 2016 at an onsite rain gauge.	2
June 15, 2017	April 25, 2017	4.66 inches of rain was recorded between April 23 and 25, 2017 at an onsite rain gauge.	
October 27, 2017	June 19, 2017	Wrack and laid back vegetation observed in the floodplain of Travis Creek after 1.93 inches of rain was recorded on June 19, 2017 at an onsite rain gauge	3
October 24, 2018	September 17, 2018	Overbank as the result of Hurricane Florence on September 15-17, 2018.	
October 24, 2018	October 11, 2018	Overbank as the result of Hurricane Michael on October 11, 2018.	
October 16, 2019	July 7, 2019	Stream gauge data indicates a bankfull event occurred after 1.82 inches of rain was recorded on July 7, 2019 at an onsite rain gauge.	1
October 16, 2019	July 23, 2019	Stream gauge data indicates a bankfull event occurred after 1.35 inches of rain was recorded on July 23, 2019 at an onsite rain gauge.	-
November 21, 2019	October 22, 2019	Visual as well as onsite rain gauge data indicated that a bankfull event occurred after 1.8 inches of rain fell	4


^{*}The onsite rain gauge was installed on May 18, 2016, therefore rain data from a nearby Site (Abbey Lamm Stream and Wetland Mitigation Site) was used to confirm this bankfull event.



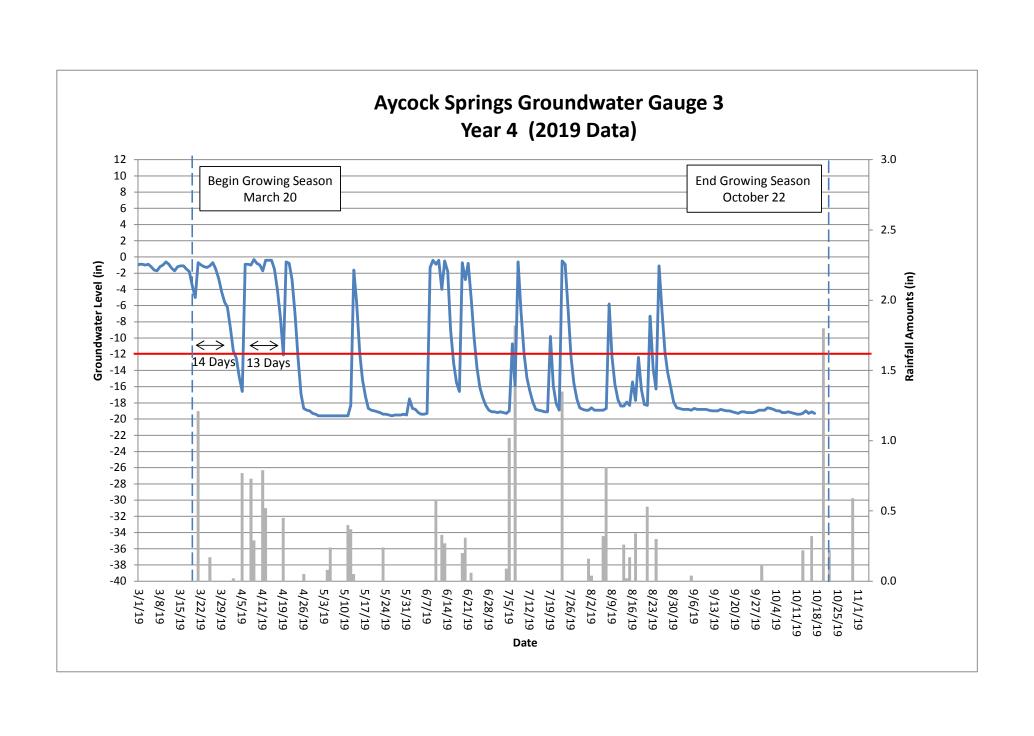


Table 15. Groundwater Hydrology Data

	Succes	s Criteria Achie	ved/Max Conse	cutive Days Dur	ing Growing Se	ason (Percent	age)
Gauge	Year 1* (2016)	Year 2 (2017)	Year 3 (2018)	Year 4 (2019)	Year 5 (2020)	Year 6 (2021)	Year 7 (2022)
1	Yes/55 days (29.1 percent)	Yes/26 days (11.0 percent)	Yes/58 days (25.1 percent)	Yes/40 days (18 percent)			
2	Yes/46 days (24.3 percent)	Yes/25 days (10.5 percent)	Yes/65 days (28.1 percent)	Yes/67 days (31 percent)			
3	Yes/44 days (23.3 percent)	Yes/25 days (10.5 percent)	Yes/46 days (19.9 percent)	No/14 days (6.5 percent)			

^{*}Due to Site construction activities, groundwater gauges were not installed until May 5, 2016; therefore, the growing season for Year 1 (2016) is based on the soil survey start date of April 17. It is expected that all gauges would meet success criteria at the beginning of the growing season.

APPENDIX F BENTHIC DATA

Results

Habitat Assessment Data Sheets

PAI ID NO			52708	52709	52710
STATION			UT-1	UT-2	UT-4
DATE			6/12/2019	6/12/2019	6/12/2019
SPECIES	T.V.	F.F.G.			
NEMATODA		CG	1		
MOLLUSCA					
Bivalvia					
Veneroida					
Sphaeriidae					
Pisidium sp.	6.6	FC		7	
Gastropoda					
Basommatophora					
Lymnaeidae		SC			
Fossaria sp.		CG		2	
Pseudosuccinea columella	7.7	CG	1	1	
ANNELIDA					
Clitellata					
Oligochaeta		CG			
Tubificida					
Tubificinae w.h.c.				2	
Lumbriculida					
Lumbriculidae		CG	1	2	
ARTHROPODA					
Crustacea					
Amphipoda		CG			
Crangonyctidae					
Crangonyx sp.	7.2	CG		5	1
Isopoda					
Asellidae		SH			
Caecidotea sp.	8.4	CG	5	14	2
Decapoda					
Cambaridae			1		
Insecta					
Collembola					
Isotomidae				1	1
Ephemeroptera					
Baetidae		CG			
Procloeon sp.	1.9		2		
Caenidae		CG			
Caenis latipennis	6.8	CG	23		
Caenis sp.	6.8	CG		2	
Odonata					
Aeshnidae		Р			
Aeshna sp.		Р	3		
Ischnura sp.	9.5			9	

PAI ID NO			52708	52709	52710
STATION			UT-1	UT-2	UT-4
DATE			6/12/2019	6/12/2019	6/12/2019
SPECIES	T.V.	F.F.G.			
Casassianidas		_			
Coenagrionidae		P P	2		
Argia sp.	8.3	Ρ	3		1
Ischnura sp.	9.5		11		1
Cordulegastridae		P		4	
Cordulegaster sp.	5.7	Р		1	
Corduliidae			3	2	1
Hemiptera					
Veliidae		P			
Microvelia sp.		Р	1	1	
Megaloptera					
Corydalidae		Р			
Chauliodes pectinicornis					1
Chauliodes rastricornis		Р		1	
Sialidae		Р			
Sialis sp.	7	Р	4		1
Trichoptera					
Hydropsychidae		FC			
Cheumatopsyche sp.	6.6	FC	1		
Coleoptera					
Haliplidae					
Peltodytes sexmaculatus	8.4		2		
Hydrophilidae		Р	5		
Helochares sp.		Р			1
Paracymus sp.		CG		2	
Tropisternus sp.	9.3	Р	2		1
Staphylinidae		Р	1		
Diptera					
Ceratopogonidae		Р	1		
Chironomidae					
Conchapelopia sp.	8.4	Р	1		1
Polypedilum flavum	5.7	SH		1	1
Polypedilum illinoense gp.	8.7	SH	5		
Rheotanytarsus exiguus gp.	6.5	FC	1		
Culicidae		FC			
Anopheles sp.	8.6	FC	6		
Ptychopteridae					
Bittacomorpha clavipes				6	
Sciomyzidae				1	
-					
TOTAL NO. OF ORGANISMS			84	60	12
TOTAL NO. OF TAXA	1		23	18	11

AXIOM, AYCOCK, ALAMACE COUNTY, NC, BENTHIC MACROINVERTEBRATES 6/12/2019.

PAI ID NO			52708	52709	52710
STATION			UT-1	UT-2	UT-4
DATE			6/12/2019	6/12/2019	6/12/2019
SPECIES	T.V.	F.F.G.			
EPT TAXA			3	1	0
BIOTIC INDEX ASSIGNED VALUES			7.97	7.82	7.93

3/06 Revision 6

Attack 4T-1

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

TOTAL SCORE

Biological Assessment Unit, DWQ

Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics.

Stream 4+ 10 Travis (rek Location/road: Auch R) (Road Name Amich) County Alqua Wie
Date 190612 CC# 03030002 Basin Cane Fear Subbasin 03-06-02
Observer(s) P.P. D.L Type of Study: \square Fish ABenthos \square Basinwide \square Special Study (Describe)
Latitude 3.129077 Longitude 79.521137 Ecoregion: MT XP Slate Belt Triassic Basin
Water Quality: Temperature OC DO mg/l Conductivity (corr.) µS/cm pH
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.
Visible Land Use: 10 %Forest %Residential 90 %Active Pasture %Active Crops %Fallow Fields %Commercial %Industrial %Other - Describe:
Watershed land use: Agriculture UUrban Animal operations upstream
Width: (meters) Stream '5 Channel (at top of bank) 1.5 Stream Depth: (m) Avg · Max .3
Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m)
Bank Angle: 45 ° or □ NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90° indicate slope is away from channel. NA if bank is too low for bank angle to matter.) □ Channelized Ditch
□ Deeply incised-steep, straight banks □ Both banks undercut at bend □ Channel filled in with sediment □ Recent overbank deposits □ Bar development □ Buried structures □ Exposed bedrock □ Excessive periphyton growth □ Heavy filamentous algae growth □ Green tinge □ Sewage smell Manmade Stabilization: □ N
Turbidity: Clear A Slightly Turbid Turbid Tannic Milky Colored (from dyes) Good potential for Wetlands Restoration Project?? YES NO Details Military Significant No Signific
Channel Flow Status
Useful especially under abnormal or low flow conditions.
A. Water reaches base of both lower banks, minimal channel substrate exposed B. Water fills >75% of available channel, or <25% of channel substrate is exposed. C. Water fills 25-75% of available channel, many logs/snags exposed.
D. Root mats out of water E. Very little water in channel, mostly present as standing pools
Weather Conditions: Ool Oder (a7+ Photos: DN Digital D35mm
Remarks: regford charrel, sood shading abandant leat packs

AYCOCH Ut_1

1. Channel Mounication				Score	
A. channel natural, frequent bends					
B. channel natural, infrequent bends (channel					
C. some channelization present					
D. more extensive channelization, >40% of st					
E. no bends, completely channelized or rip ra	pped or gabior	ned, etc		0	
☐ Evidence of dredging ☐ Evidence of desnagging=no large	ge woody debi	ris in stream 🗖 🗖	Banks of unifor	m shape/height	
Remarks (enlare) stream charve				Subtotal O	
II. Instream Habitat: Consider the percentage of the reach reach is rocks, 1 type is present, circle the score of 17. Definition	h that is favora	cks consist of old			3
begun to decay (not piles of leaves in pool areas). Mark as	Rare, Commo	on, or Abundant.			
C Rocks A Macrophytes A Sticks and leafpack	ks <u>L</u> Snags	and logs <u>L</u>	J ndercut bank	ss or root mats	
AMOUNT OF REACH FAVO	RABLE FOR	COLONIZATI	ON OR COV	er	
	>70%	40-70%	20-40%	<20%	
	Score	Score	Score	Score	
4 or 5 types present	20	(16)	12	8	
3 types present	19	15	11	7	
** *		14			
2 types present			10	6	
1 type present		13	9	5	
No types present	0	last as		16	
☐ No woody vegetation in riparian zone Remarks_	Hat pact	5 developis	15 1	Subtotal 16	
III. Bottom Substrate (silt, sand, detritus, gravel, cobble for embeddedness, and use rocks from all parts of riffle-loom. A. substrate with good mix of gravel, cobble and the substrate with good mix of gravel, cobble and the substrate with good mix of gravel, cobble and the substrate gravel and cobble to the substrate gravel and the substrate gravel to the	ok for <u>"mud lin</u> nd boulders usually only b	e" or difficulty e	xtracting rocks	Score 15 12 8 3	île
4. substrate nearly all silt/ clay		***************************************		1)()	
Remarks				Subtotal	
IV. Pool Variety Pools are areas of deeper than average associated with pools are always slow. Pools may take the large high gradient streams, or side eddies.				bulence. Water velocities oulders or obstructions, in	
A. Pools present				<u>Score</u>	
1. Pools Frequent (>30% of 200m area surveyed)					
a. variety of pool sizes	*****************			(10)	
b. pools about the same size (indicates po					
2. Pools Infrequent (<30% of the 200m area surve					
a. variety of pool sizes			****	6	
b. pools about the same size					
B. Pools absent					
D. I UVIS AUSCHL		******************		Subtotal (C)	
☐ Pool bottom boulder-cobble=hard ☐ Bottom sandy-sind	k as you wall-	M Silt hattam F	7 Come monte o	Sublicial V	
	k as you walk	Part notion I	a some boots o	over wader depth	
Remarks				n 42	5
				Page Total 1	_

V. Riffle Habitats Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequence		Infrequent	
Scot			
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream	12		
B. riffle as wide as stream but riffle length is not 2X stream width	7		
C. riffle not as wide as stream and riffle length is not 2X stream width	3		
D. riffles absent	0.1	16	
Channel Slope: Typical for area □Steep=fast flow □Low=like a coastal stream	Sub	ototal VV	
VI. Bank Stability and Vegetation	T - 0 D1-	D4 D1-	
FACE UPSTREAM	Left Bank	Rt. Bank	
4 P 1 (1)	Score	Score	
A. Banks stable	(3)	(2)	
1. little evidence of erosion or bank failure(except outside of bends), little potential for erosi	on.	0	
B. Erosion areas present	6	6	
 diverse trees, shrubs, grass; plants healthy with good root systems few trees or small trees and shrubs; vegetation appears generally healthy 		5	
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding		3	
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow		2	
5. little or no bank vegetation, mass erosion and bank failure evident		0 ///	
5. Intie of no bank vegetation, mass crosion and bank famile evident		Total 14	
Remarks		Otal	
VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's sur sunlight when the sun is directly overhead. Note shading from mountains, but not use to score the			t
A. Stream with good canopy with some breaks for light penetration		Score	
		8 8	
B. Stream with full canopy - breaks for light penetration absent			
C. Stream with partial canopy - sunlight and shading are essentially equal D. Stream with minimal canopy - full sun in all but a few areas		7 2	
E. No canopy and no shading.		0	
		U	
Remarks Willows Visorous fu-ous hart reach		Subtotal 🖇	
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyone in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc.			
FACE UPSTREAM	Lft. Bank	Rt. Bank	
Dominant vegetation: Trees A Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks)	Score Score	Score	
1. width > 18 meters	5	5_	
2. width 12-18 meters	4	4)	
3. width 6-12 meters	3	3	
4. width < 6 meters	2	2	
B. Riparian zone not intact (breaks)			
1. breaks rare			
a. width > 18 meters	4	4	
b. width 12-18 meters	3	3	
c. width 6-12 meters	2	2	
d. width < 6 meters	1	1	
2. breaks common			
a. width > 18 meters	3	3	
b. width 12-18 meters	2	2	
c. width 6-12 meters	1	1 /	
d. width < 6 meters.	0	0 %	
Remarks M7-04	j	Total U	
		. 41	
	Page To	otal_46_	
Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.	TAL SCOR	H: 41.1	

Afterly UT-2 3/06 Revision 6

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

Biological Assessment Unit, DWQ TOTAL SCORE
Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an
upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average
stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the
description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions,
select an intermediate score. A final habitat score is determined by adding the results from the different metrics.
Stream UT to Trades Cell Location/road: South of Road Name Amula) County Alamane
Date 190612 CC#03030002 Basin Cyne Fear Subbasin 03-06-02
Observer(s) N.O.L Type of Study: Fish Benthos Basinwide Special Study (Describe)
Latitude 36.128128 Longitude 79.5 21813 Ecoregion: MT P Slate Belt Triassic Basin
Water Quality: Temperature °C DO mg/l Conductivity (corr.) µS/cm pH
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.
Visible Land Lice: 10 % Forest % O/ Pacidential 00 % Active Destruction 0/ Active Comme
Visible Land Use: 10 %Forest %Residential q0 %Active Pasture % Active Crops %Fallow Fields %Commercial %Industrial %Other - Describe:
Watershed land use:
Width: (meters) Stream 5 Channel (at top of bank) 15 Stream Depth: (m) Avg .025 Max .05
□ Width variable □ Large river >25m wide Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m) 25 - 5
Bank Angle: 45 or NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90°
indicate slope is away from channel. NA if bank is too low for bank angle to matter.)
☐ Channelized Ditch
□Deeply incised-steep, straight banks □Both banks undercut at bend □Channel filled in with sediment
□ Recent overbank deposits □ Bar development □ Buried structures □ Exposed bedrock
□ Recent overbank deposits □ Bar development □ Buried structures □ Exposed bedrock □ Heavy filamentous algae growth □ Green tinge □ Sewage smell
Manmade Stabilization: ☐Y: ☐Rip-rap, cement, gabions ☐ Sediment/grade-control structure ☐Berm/levee
Flow conditions: High Normal Low
Turbidity: MClear I Slightly Turbid I Turbid I Tonnic I Milky I Colored (from dyor)
Good potential for Wetlands Restoration Project?? YES NO Details 7/rcv : We land Misal tows .
Channel Flow Status
Useful especially under abnormal or low flow conditions.
A. Water reaches base of both lower banks, minimal channel substrate exposed
B. Water fills >75% of available channel, or <25% of channel substrate is exposed
C. Water fills 25-75% of available channel, many logs/snags exposed
C. Water fills 25-75% of available channel, many logs/snags exposed
E. Very little water in channel, mostly present as standing pools
Weather Conditions: 600 Orcact Photos: IN IY Digital I35mm
Remarks: 4/4 undown 1 pgo lation à Algae los que los of gambugia amphibians
The state of the s

AYCOCK UT-2 I. Channel Modification A: channel natural, frequent bends..... B. channel natural, infrequent bends (channelization could be old)..... C. some channelization present..... D. more extensive channelization, >40% of stream disrupted. E. no bends, completely channelized or rip rapped or gabioned, etc..... ☐ Evidence of dredging ☐ Evidence of desnagging=no large woody debris in stream ☐ Banks of uniform shape/height Remarks II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as Rare, Common, or Abundant. Rocks A Macrophytes & Sticks and leafpacks A Snags and logs Undercut banks or root mats AMOUNT OF REACH FAVORABLE FOR COLONIZATION OR COVER <20% >70% 40-70% 20-40% Score Score Score Score 8 4 or 5 types present..... 16 12 3 types present..... 19 15 11 7 6 2 types present..... 18 14 10 9 5 1 type present..... 17 13 No types present..... ☐ No woody vegetation in riparian zone Remarks III. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedness, and use rocks from all parts of riffle-look for "mud line" or difficulty extracting rocks. A. substrate with good mix of gravel, cobble and boulders **Score** 1. embeddedness <20% (very little sand, usually only behind large boulders)..... 15 2. embeddedness 20-40%.... 12 3. embeddedness 40-80%.... 8 4. embeddedness >80%.... 3 B. substrate gravel and cobble 1. embeddedness <20%... 14 2. embeddedness 20-40% 11 3. embeddedness 40-80% 4. embeddedness >80%.... C. substrate mostly gravel 1. embeddedness <50%.... 8 2. embeddedness >50%.... D. substrate homogeneous 1. substrate nearly all bedrock. 2. substrate nearly all sand 3 2 3. substrate nearly all detritus..... 4. substrate nearly all silt/ clay..... 1 Remarks 19-58 colphe bed material, low slope, Low every IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies. A. Pools present Score 1. Pools Frequent (>30% of 200m area surveyed) a. variety of pool sizes..... b. pools about the same size (indicates pools filling in)......

a. variety of pool sizes.....b. pools about the same size.......

Subtotal

Page Tota

B. Pools absent.

☐ Pool bottom boulder-cobble=hard ☐ Bottom sandy-sink as you walk ☐ Silt bottom ☐ Some pools over wader depth

2. Pools Infrequent (<30% of the 200m area surveyed)

Remarks

A+10064 UT-2

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequent Section 1. Section 2. Riffles Frequent S		nfrequent
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream B. riffle as wide as stream but riffle length is not 2X stream width	12 7	
C. riffle not as wide as stream and riffle length is not 2X stream width	3	11
D. riffles absent.		16
Channel Slope: ▼Typical for area □Steep=fast flow □Low=like a coastal stream	Sub	total
VI. Bank Stability and Vegetation		
FACE UPSTREAM	Left Bank	Rt. Bank
	Score	Score
A. Banks stable		
1. little evidence of erosion or bank failure(except outside of bends), little potential for erosi	on(7)	7
B. Erosion areas present	_	
1. diverse trees, shrubs, grass; plants healthy with good root systems		6
2. few trees or small trees and shrubs; vegetation appears generally healthy		5 3
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding		
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow		2 1/1
5. little or no bank vegetation, mass erosion and bank failure evident		0 14
Remarks	Т	otal
VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's sur sunlight when the sun is directly overhead. Note shading from mountains, but not use to score the		y would block out Score
A. Stream with good canopy with some breaks for light penetration		10
B. Stream with full canopy - breaks for light penetration absent		
C. Stream with partial canopy - sunlight and shading are essentially equal		8 7 2 0
D. Stream with minimal canopy - full sun in all but a few areas		2
		2
E. No canopy and no shading.		
Remarks Willows & hardward species are visores		Subtotal S
Remarks Willoug & hardward spectes are visores VIII. Riparian Vegetative Zone Width		Subtotal
Remarks Willoug : hardward species are visoros		Subtotal
Remarks Willoug & hardward spectes are visores VIII. Riparian Vegetative Zone Width	d floodplain).	Subtotal S Definition: A break
Remarks Willows & hardward species are visores VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyone in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc.	d floodplain).	Subtotal Definition: A break m, such as paths
Remarks Willows & hardward species are visores VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyone in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM	d floodplain).	Subtotal S Definition: A break
Remarks Willows & hard year Species are Usores VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyone in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Dexotics (kudzu, etc)	d floodplain). Inter the strea	Subtotal Definition: A break m, such as paths
Remarks Willows & hard was specified are visored. VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyone in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks)	d floodplain). Inter the strea Lft. Bank	Subtotal S Definition: A break m, such as paths Rt. Bank
Remarks Willows & hard year Species are Usores VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyone in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Dexotics (kudzu, etc)	d floodplain). Inter the strea Lft. Bank	Subtotal S Definition: A break m, such as paths Rt. Bank
Note that the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain). Inter the strea Lft. Bank	Subtotal S Definition: A break m, such as paths Rt. Bank
Note that the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters.	d floodplain). Inter the strea Lft. Bank	Subtotal S Definition: A break m, such as paths Rt. Bank
No.	d floodplain). Inter the strea Lft. Bank	Subtotal S Definition: A break m, such as paths Rt. Bank
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyone in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain). Inter the strea Lft. Bank	Subtotal S Definition: A break m, such as paths Rt. Bank
No.	d floodplain). Inter the strea Lft. Bank	Subtotal S Definition: A break m, such as paths Rt. Bank
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain). Inter the strea Lft. Bank	Subtotal S Definition: A break m, such as paths Rt. Bank
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyone in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain). Inter the strea Lft. Bank	Definition: A break m, such as paths Rt. Bank Score 5 4 3 2
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyone in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters.	d floodplain). Inter the streat Lft. Bank Score 5 4 3 2	Definition: A break m, such as paths Rt. Bank Score 5 4 3 2
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyone in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters.	d floodplain). Inter the streat Lft. Bank Score 5 4 3 2	Definition: A break m, such as paths Rt. Bank Score 5 4 3 2
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyone in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters.	d floodplain). Inter the streat Lft. Bank Score 5 4 3 2	Definition: A break m, such as paths Rt. Bank Score 5 4 3 2
NIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyone in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain). Inter the streat Lft. Bank Score 5 4 3 2	Definition: A break m, such as paths Rt. Bank Score 5 4 3 2
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyone in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain). Inter the streat Lft. Bank Score 5 4 3 2 1	Definition: A break m, such as paths Rt. Bank Score 5 4 3 2
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyone in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters. 2. breaks common a. width > 18 meters.	d floodplain). Inter the streat Lft. Bank Score 5 4 3 2 1	Definition: A break m, such as paths Rt. Bank Score 5 4 3 2 1 3
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyone in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Gweeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain). enter the streat Lft. Bank Score 5 4 3 2 1 3 2	Definition: A break m, such as paths Rt. Bank Score 5 4 3 2 1 3
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyone in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees SI Shrubs	d floodplain). enter the streat Lft. Bank Score 5 4 3 2 1 3 2 1 0	Definition: A break m, such as paths Rt. Bank Score 5 4 3 2 1 3
NIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyone in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters 2. width 12-18 meters 4. width < 6 meters B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters b. width 12-18 meters c. width 6-12 meters d. width < 6 meters 2. breaks common a. width > 18 meters b. width 12-18 meters c. width 6-12 meters d. width < 6 meters c. width 6-12 meters d. width < 6 meters c. width 6-12 meters d. width < 6 meters d. width < 6 meters c. width 6-12 meters d. width < 6 meters	d floodplain). enter the streat Lft. Bank Score 5 4 3 2 1 3 2 1 0 T	Definition: A break m, such as paths Rt. Bank Score 5 4 3 2 1 3 3 2 1 3 3 2 1 3 3 2 1 3 3 2 1 3 3 3 2 1 3 3 3 3
NII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyone in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: A Trees A Shrubs A Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters. 2. breaks common a. width > 18 meters. b. width > 18 meters. c. width 6-12 meters. d. width > 18 meters. c. width 6-12 meters. d. width > 18 meters. c. width 6-12 meters. d. width > 18 meters. c. width 6-12 meters. d. width > 18 meters. c. width 6-12 meters. d. width > 18 meters. d. width > 18 meters. c. width 6-12 meters. d. width < 6 meters.	d floodplain). enter the streat Lft. Bank Score 5 4 3 2 1 3 2 1 0	Definition: A break m, such as paths Rt. Bank Score 5 4 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 3 2 1 3 3 2 1 3 3 3 2 1 3 3 3 2 1 3 3 3 2 1 3 3 3 3

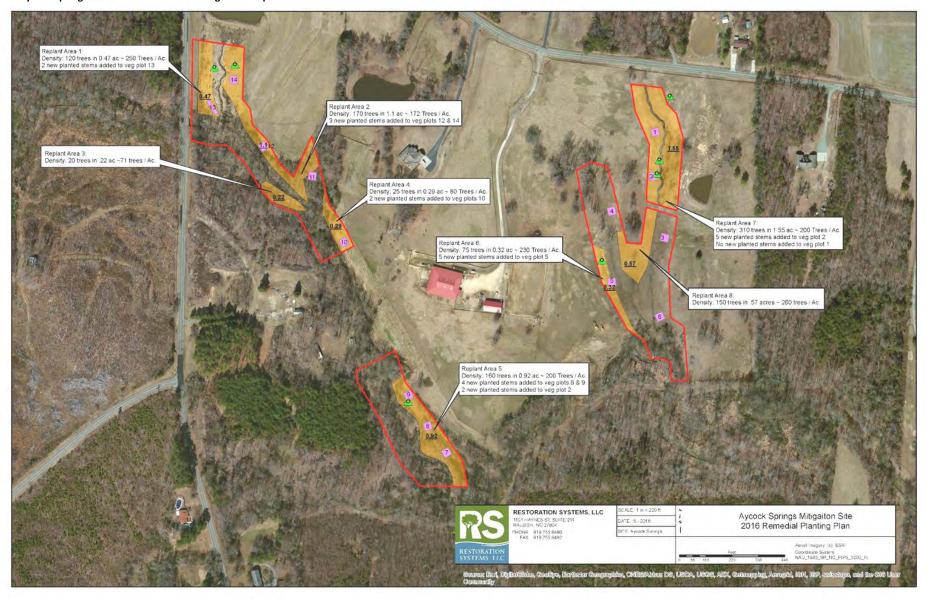
3/06 Revision 6

Habitat Assessment Field Data Sheet

Wountain/ Fledmont Streams
Biological Assessment Unit, DWQ TOTAL SCORE
Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an
upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average
stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the
description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions,
select an intermediate score. A final habitat score is determined by adding the results from the different metrics.
005+ 0+ GIDSONVILLE GIRSONVILLE 11
select an intermediate score. A final habitat score is determined by adding the results from the different metrics. Stream UT to raves Cell Location/road: Office (Road Name Office) County A amawhe
Date 1906/2 CC# 03030002 Basin Cane Fear Subbasin 03-06-02
Observer(s) P. V. D. L. Type of Study: Fish Benthos Basinwide Special Study (Describe)
Latitude 36 19805 Longitude 79.521165 Ecoregion: □MT X P □ Slate Belt □ Triassic Basin
Water Quality: Temperature OC DO mg/l Conductivity (corr.) μS/cm pH
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.
W. 11 J. 11 1 1 90 1 1 2 90 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Visible Land Use:
%Fallow Fields % Commercial %Industrial %Other - Describe:
Watershed land use: A Forest A Agriculture Urban Animal operations upstream
Width: (meters) Stream 1.5 Channel (at top of bank) 2 Stream Depth: (m) Avg / Max / 25 Width variable
Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m)
Bank Angle: 45 or DNA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90°
indicate slope is away from channel. NA if bank is too low for bank angle to matter.)
☐ Channelized Ditch
Deeply incised-steep, straight banks Both banks undercut at bend Channel filled in with sediment
□ Recent overbank deposits □ Bar development □ Buried structures □ Exposed bedrock □ Excessive periphyton growth □ Heavy filamentous algae growth □ Green tinge □ Sewage smell
□ Excessive periphyton growth □ Heavy filamentous algae growth □ Green tinge □ Sewage smell Manmade Stabilization: □N □ ☑Y: □Rip-rap, cement, gabions □ Sediment/grade-control structure □ Berm/levee
Flow conditions: High Discount Disco
Turbidity: Clear Slightly Turbid Turbid Turbid Colored (from dyes)
Good potential for Wetlands Restoration Project?? TYES DNO Details Channel Flow Status
Useful especially under abnormal or low flow conditions.
A. Water reaches base of both lower banks, minimal channel substrate exposed
B. Water fills >75% of available channel, or <25% of channel substrate is exposed
C. Water fills 25-75% of available channel, many logs/snags exposed
A. Water reaches base of both lower banks, minimal channel substrate exposed B. Water fills >75% of available channel, or <25% of channel substrate is exposed. C. Water fills 25-75% of available channel, many logs/snags exposed. D. Root mats out of water.
D. Voly near water in channel, mostly present as standing pools
Weather Conditions: 60 -0 0 cast Photos: IN IY Digital I35mm

Remarks: rantal was been andre average prior to neutrice collection loss of small amphipols afream velocity was high

AYCOCK-474 Score


1. Changel Wounication				💆) IE
A. channel natural, frequent bends					
B. channel natural, infrequent bends (channel					
C. some channelization present			*****************	3	
D. more extensive channelization, >40% of st					
E. no bends, completely channelized or rip ra					
☐ Evidence of dredging ☐ Evidence of desnagging=no lar Remarks	ge woody d	lebris in stream L	JBanks of unifo	rm shape/height Subtota	/
II. Instream Habitat: Consider the percentage of the reac	h that is fav	vorable for bentho	s colonization or	r fish cover. If	>70% of the
reach is rocks, 1 type is present, circle the score of 17. Defi	inition: lea	fpacks consist of o	older leaves that	are packed toge	ther and have
begun to decay (not piles of leaves in pool areas). Mark as	Rare, Con	mon, or Abundan	<u>t.</u>	-	
C Rocks A Macrophytes A Sticks and leafpack	ks <u>[]</u> Sna	ags and logs 👤	_Undercut banl	ks or root mats	1
AMOUNT OF REACH FAVO	RABLE F	OR COLONIZA	TION OR COV	ER	
	>70%	40-70%	20-40%	<20%	
	Score	Score	Score	Score	
4 or 5 types present	20	16	12	8	
3 types present	19	15	11	7	
2 types present	18	14	10	6	
1 type present		13	9	5	
No types present			-		1/_
☐ No woody vegetation in riparian zone Remarks				Subt	otal (O
III. Bottom Substrate (silt, sand, detritus, gravel, cobble					ly look at riffle
for embeddedness, and use rocks from all parts of riffle-loo			extracting rock		
A. substrate with good mix of gravel, cobble as			11 \		ore
1. embeddedness <20% (very little sand,	usually onl	ly behind large bot	ulders)	15	
2. embeddedness 20-40%					
3. embeddedness 40-80%					
4. embeddedness >80%	*************			3	
B. substrate gravel and cobble					
1. embeddedness <20%					X
2. embeddedness 20-40%)
3. embeddedness 40-80%	*************			<u></u> <u> </u>	
4. embeddedness >80%	**************		•••••••	2	
C. substrate mostly gravel					
1. embeddedness <50%					
2. embeddedness >50%	••••••	************************		4	
D. substrate homogeneous					
substrate nearly all bedrock					
2. substrate nearly all sand	************		***************************************	3	
3. substrate nearly all detritus		***************************************	*******************	2	1
4. substrate nearly all silt/ clay				1	- 17
Remarks				Subtota	1
IV. Pool Variety Pools are areas of deeper than average associated with pools are always slow. Pools may take the large high gradient streams, or side eddies.	maximum form of "po	depths with little ocket water", smal	or no surface tur I pools behind b	bulence. Water oulders or obstr	velocities auctions, in
A. Pools present				Sc	ore
1. Pools Frequent (>30% of 200m area surveyed)					
a. variety of pool sizes				10	
b. pools about the same size (indicates po					
2. Pools Infrequent (<30% of the 200m area surve		,			
a. variety of pool sizes				6	
b. pools about the same size					
B. Pools absent					1
				Subtotal	X
Pool bottom boulder-cobble=hard Bottom sandy-sinl	k as von wa	lk 🗆 Silt bottom	☐ Some nools	over wader den	th .
Remarks	,		poolo	a.a. mader dop	$ u_{\Omega}$
,				Pa	ge Total

AYLOCK-UT-4

V. Riffle Habitats Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequence.		Infrequent
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream B. riffle as wide as stream but riffle length is not 2X stream width	7	1/
Channel Slope: □Typical for area □Steep=fast flow □Low=like a coastal stream	Sub	ototal 19
VI. Bank Stability and Vegetation FACE UPSTREAM	Left Bank Score	Rt. Bank Score
A. Banks stable 1. little evidence of erosion or bank failure(except outside of bends), little potential for ero B. Erosion areas present 1. diverse trees, shrubs, grass; plants healthy with good root systems	sion. (7) 6 5	6 5
 sparse mixed vegetation; plant types and conditions suggest poorer soil binding	3 ow 2 0	3 2 0 Cotal [4]
Remarks		
VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's sunlight when the sun is directly overhead. Note shading from mountains, but not use to score and A. Stream with good canopy with some breaks for light penetration	this metric.	y would block out Score
B. Stream with full canopy - breaks for light penetration absent. C. Stream with partial canopy - sunlight and shading are essentially equal. D. Stream with minimal canopy - full sun in all but a few areas. E. No canopy and no shading.	********	7 2 0
Remarks		Subtotal
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly	nd floodplain) enter the strea	. Definition: A break
down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc.)	Lft. Bank) Score	Rt. Bank Score
down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc A. Riparian zone intact (no breaks) 1. width > 18 meters	Lft. Bank Score 5 4 2	Rt. Bank
down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc. A. Riparian zone intact (no breaks) 1. width > 18 meters	Lft. Bank Score 5 4 3 2 1	Rt. Bank
down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc. A. Riparian zone intact (no breaks) 1. width > 18 meters	Score 5 4 3 2 1 0	Rt. Bank Score 5 4 3 2 1 3 2 1 0 // // // // // // // // //
down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc. A. Riparian zone intact (no breaks) 1. width > 18 meters	Score 5 4 3 2 1 0	Rt. Bank Score 5 4 3 2 1

APPENDIX G MISCELLANOUS

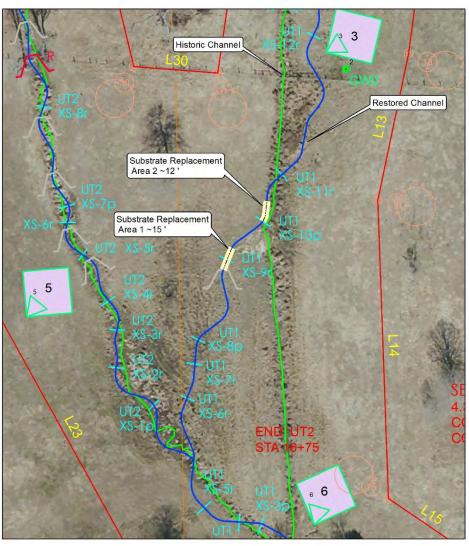
Map of Replant Areas- green dots indicate approximate location of where photos were taken.

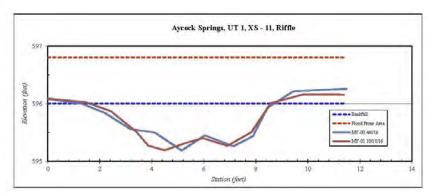
Photo 1: Looking SW. along Replant Area -1

Photo 2: Looking S. in Replant Area 2, just N. of veg. plot 14

Photo 3: Looking SE. in Replant Area 4, near veg. plot 9

Photo 5: Looking S. in Replant Area 5, N. of veg. plot 5


Photo 4: Looking S. in Replant Area 6, from outside of the easement


Photo 6 / 7: Live stake establishment on bank in Replant area 6

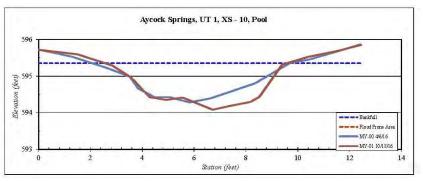


Photo Date: 1-13-2017



Photo 1: Substrate loss, 6" head-cut at UT 1, XC 9

Photo 2: Pool, upstream of 6" head-cut at UT 1, XC 9 (XC 10 in background)

Photo 3: Substrate replacement at UT 1, XC 9

Photo 3: Substrate loss, upstream riffle of XC 10 (pool)

Photo 4: Substrate replaced, upstream riffle of XC 10 (pool)

Photo 5: post replacement overview

Photo 6: UT-1 looking downstream from XC-11

Photo 7: XC-9 – Post 3-1-2017 0.92 inch rain event (Per USGS Guage at BUFFALO CREEK (SR2819 NR MCLEANSVILLE, NC) ~ 7 miles from Site

Photo 7: XC-10 – Post 3-1-2017 0.92 inch rain event (Per USGS Guage at BUFFALO CREEK (SR2819 NR MCLEANSVILLE, NC) ~ 7 miles from Site